
PAPER I

									17	
. 0		- hour is a						1.	100	
0.2		power	(2)	energy	(3)	current	(4)	voltage	(5) ti	ime
. 02	(1)	f the followin	ig pairs o	pnysicalqua	intities is	Stress an	ne dimensio	ons?		
	. (4)	Coefficient	ofvisco	sity and surfa	ce tensio	n. (5)	Force and	monientum.	s moduli	is and pressi
03	. If the ind	ex of refracti	on of wat	er is 4 and th	e veloci	y of light i	n air 3x10°	m s then the	velocity	of light in wa
	is equal t	0		3						_
	(1)	2.25x10 ⁸ m	s' (2)	3x10° m s-1	(3)	4x10° m s	-1 (4)	4.25x10° m s	(5)	1.2x10° m s'
04	. The imag	ge of an objec	t placed i	n front of a co	onvex mi	rror is				
		erect, real v								
		erect, virtu				inverted,	virtual with	magnificatio	on < 1	
05		inverted, re necessary r				of the fall	lowing the	rmometers is	esciect	to construct
03	laborator		Hateriais	are provided	J WIIICII	or the lon	iowing the	inioniciers is	Casicst	io construct
		Thermocou	iple.(2)	Alcohol in g	lass the	mometer.	(3) Con:	stant pressure	gas ther	mometer
	(4)	Mercury in	glass the	rmometer.	(5)	Constant	volume gas	s thermomete	г.	
06.	Themole	cular weight	s of two i	deai gases A	and B in	a mixture :	$are M_1$ and	M ₂ respective	ly. The r	atio .
	r. m. s.	speed of gas	A is	qual to						
	r. m. s.	speed of gas	s B			134		KA .		
	(1)	$\sqrt{\frac{M_1}{M_2}}$	(2)	M ₁	(3)	1 M2	(4)	A.F.	(5)	$\int M_1 M_2$
		V M ₂		M ₂		, M	Also	und If the si	e recicta	nce is nealer
07	An objec	t is projected	upward:	s with a velo	city of 1	ooms ir	om the gro	und . II the a	i resistar	nce is neglec
10		the ground 5 s (2)	in 10	c	(3)	15 s	(4)	20 s	(5)	25 s
0.0	(1)	of mass 5 M	racts on	a smooth ho	rizontal	track An	engine of	mass 3M mo	ving at 8	m s' collide
08.	A rail car	ith the rail c	ar. The st	eed of the en	gine afte	r the impa	ct is		٠.	
	(1)-	1.6 m s 1	(2)	3 m s ⁻¹	(3)	4.8 m s	(4)	5 m s -1	(5)	8 m s '
00	The veloc	ity of sound	:	· · in						
			/71	ator	(3)	steel	(4)	aluminium	(5)	kerosene
1	The speed	lof sound in	air is 332	ms". The fr	equency	of the fund	damental n	ote of an ope	n pipe 50	cm long will
	A alaaén	160 Hz on (charge =	- 1 6x10	-19 C) is acce	lerated i	hrough a	potential d	ifference of	10° V. T	he energy ac
11.	har the ale	ofron is								14
			(2)	1.6x10 ⁻²⁴ J.	(3)	3.2x10 ⁻²⁴	'J (4)	1.6x10 ⁻¹⁴ J	. (5)	3.2x10
	(1)	0.5×10 5.	·····lua of	32 C Ifthe	electro	nic charge	is equal to	-1.6x10''	, then th	e excess nui
12.	A body is	0.5x10 J. charged to a	e hody is	32 C. II tile	, cicci, ci					20
	elections	existing in th				2x10 ¹⁹	(4)	1020	(5)	2x10 ²⁰
	(1)	0 magnetic fi	- 1 1 :- 1:-	antad vertice	ally into	the naper	as shown	in the figur	e.	
13.									in ^{x x}	X X X
	onnosite d	irections. Th	e subseq	uent paths o	f the ele	ctrons are	best repres	sented by	x x	x x x
	opposite a		\			,	0		x x	x x ⁰ x
:			R	K	A		- A	1.	. v v	x x x
	10		9		0		\	0	7 ^ ^	
	. / a)	(2)	1	(3)		(4)	(5)	hat cann	ot be obtain
14.	Three equa) al resistors,	12Ω ead	ch are provi	ded. Wh	at is the v	alue of the	(3) 6Ω	(4) 4(2 (5)
										R -
15	A valtmet	er of interna	ıl resista	nce R, and	an amn	neter of in	iternal res	istance KA	"-	~~~~ '
,13.	connected	to measure a	resistan	ce R as show	n in the	figure.		Laine		1
	The ratio o	to measure a	ter readii	ng V and the	current	registerer	thy the am	meter 1 give	»" —	
,	CAROPORORIO C	20 45 CANOCAL ' P	ago three days	of an	,	1	1	1 1		1
	(1) $\frac{1}{}$	_ <u> </u>		$(2) \frac{1}{1}$	= -1 -	D	(3) $\frac{1}{R'} =$	R R		E R.
	R'	$- = \frac{1}{R} - \frac{1}{R_{\nu}}$	R_{Λ}	· · R	K 1	10	10			
ή,	(4) R'	$= R + R_{v}$	+ R.	(5) R!	$=\frac{1}{D}$	+ R,				
	, , ,,		^		Γ.,			I		

28. A rod AB of length I, is connected to another rod BC of length I, and the combined rod is subjected to a fixed stretching force of F as shown in the figure. If both rods have identical areas of crosssection and the ratio

young's modulus of the material of the rod AB $\frac{2}{3}$. the extension produced Young's modulus of the material of the rod BC by the rod AB becomes equal to that produced by BC when

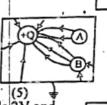
- (1) $l_1 = \frac{Fl_2}{3}$ (2) $l_1 = \frac{2}{3} l_2$ (3) $l_1 = \frac{3}{2} Fl_1$ (4) $l_1 = \frac{5}{2} l_2$ (5) $l_1 = \frac{3}{5} l_2$

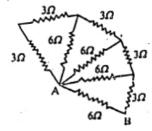
- 29. In the apparatus shown water flows at the same rate through two narrow tubes of lengths 1, 21 and radii a, a respectively. If the tubes areat depths h, and h, below the surface of water, then the ratio h,/h, will be

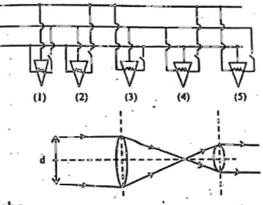
- 30. If the number of nodes produced in a stretched string connected to two fixed points is n, then the length of the wire in terms of the wavelength λ is

- (3) $(n+1)\frac{\lambda}{2}$ (4) $(n-1)\frac{\lambda}{2}$
- 31. A string vibrates with a fundamental frequency. The fundamental frequency could be doubled by,
 - (1) halving the tension
- (2) doubling the tension
- (3) doubling the length

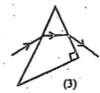
- (4) halving the length
- (5) doubling the diameter of the wire
- A conducting sphere carrying a charge + Q is placed together with two other uncharged conducting spheres A and B in an earthed metallic box as shown in the figure.

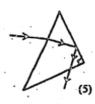

If there is no electrical contact among the spheres and the box, which of the following diagrams correctly represents the electric field around spheres?

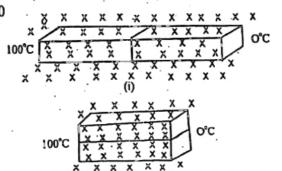

- Two capacitors having capacities 2C and C/2 are separately charged to potentials 2V and V respectively. If they are isolated from the charging source and then connected in parallel as shown in the figure. the resultant potential of the capacitor combination will be


- Two identical conducting circular loops are arranged a distance R a part which is also equal to their radius R, as shown in the figure. current i flows through the loops along the directions indicated, the magnetic flux density at the mid point O between the loops
 - (1) is directed along OX
- (2) is directed along OX
- (3) is directed along OY
- (4) is directed along OY'
- (5) is zero
- 35. A 12 V battery promises to deliver I A for 100 hours. If the entire energy of the battery can be utilised in lifting objects, this energy is sufficient to raise a 1200 kg object to a maximum height of
 - (1) 0.12 m
- (2) 1.2 m
- (3) 14.4 m
- (4) 144m
- (5) 360 m
- 36. The effective resistance between the points A and B of the network shown is
- (2) 2 Ω
- (3) 3 Ω
- (4) 4 Ω
- Each cell shown in the circuit has negligible internal resistance. The reading of the voltmeter is ?

- (4) 6 V


- 38. Two electric bulbs when connected separately to a 120V power supply draw currents of 0.83 A and 1.66 A respectively. If these two bulbs were connected in series across a 240 V power supply, current through the bulbs would be
 - (1) 1.66 A through the first bulb and 3.32 A through the second bulb.
 - (2) 0.83 A through the first bulb and 1.66 A through the second bulb.
 - (3) 0.83 A through both bulbs.
- (4) 1.66 A through both bulbs.
- (5) 1.11 A through both bulbs.
- 39. Which of the electric irons shown below is correctly connected to a power line ? Each iron is represented by a heating coil and a metal casing.
- 40. An astronomical telescope is adjusted to view a distant object. The incident rays fill the objective lens whose diameter is d. as shown in the figure. If the angular magnification of the telescope is m, the diameter of the emergent beam is

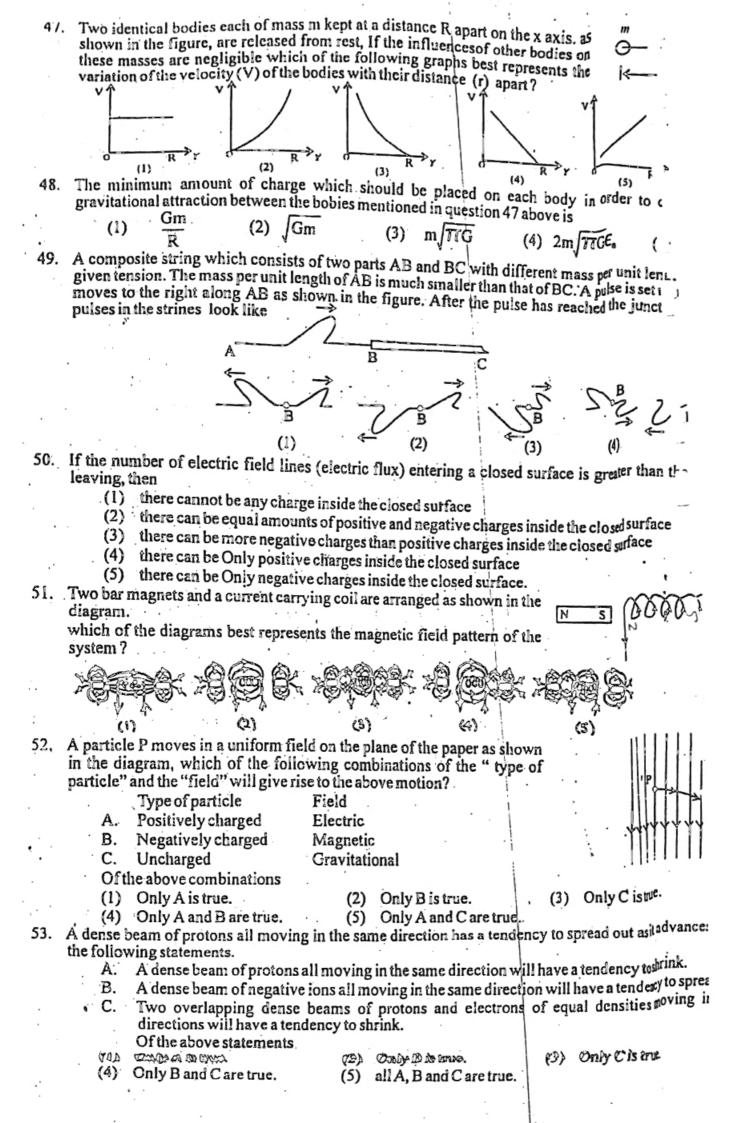

41. which of the following diagrams shows a ray of light passing through a prism with minimum deviation?

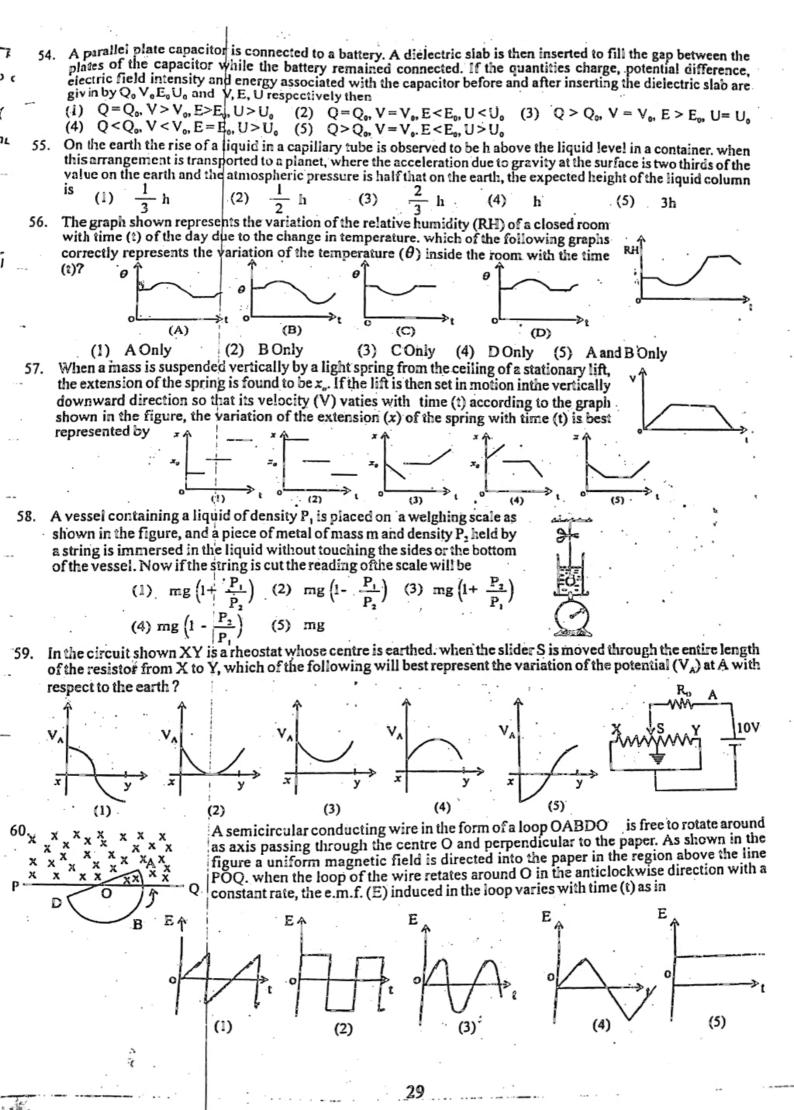


- A person suffering from vision defect/defects sees more clearly under water He is suffering from
 - (1) short sight
- (2) long sight
- (3) astigmatism

- (4) colour blindness
- (5) both long sight and astigmatism
- A spiral spring of length L, number of turns n and coil diameter d is heated from temperature θ_1 to θ_2 . If the linear expansivity of the material of the spring is or, the increase in length of the spring will be] (2) $La(\theta_2 - \theta_1)$ (5) $2\pi dn\alpha(\theta_2 - \theta_1)$
 - (1) $L[1+\pi dn \alpha (\theta_2-\theta_1)]$
- (3) $\pi \operatorname{dnot}(\theta_2 \theta_1)$

- (4) $L[1+\alpha(\theta_2-\theta_1)]$
- A closed container of volume V contains an ideal gas at pressure P₁, when a certain amount of the gas is now removed from this container its pressure becomes P₂, the percentage reduction of the mass of the gas in the (1) $\frac{P_2}{P_1} \times 100$ (2) $\frac{P_2}{P_1 + P_2} \times 100$ (4) $\frac{P_1P_2}{P_1 + P_2} \times 100$ (5) $\frac{P_1 - P_2}{P_1} \times 100$ container is
- (3) $\frac{P_1}{P_1 + P_2}$ X 100


- Two well lagged identical rectangular metal beams are connected end to end as shown in figure (1). At steady state when a temperature difference of 100 °C is maintained across the ends, 10 J of heat is found to flow through the beams in 2 minutes. If one beam is now placed on top of the other, with faces lagged as in figure (11), the time taken by the same amount of heat to flow through the beams when the same temperature difference is maintained at the open ends is



- (1) 0.25 min
- (2) 0.5 min (3) 1 min

- (4) 1.5 min
- (5) 2 min
- 46. consider the following statements made about the motion of a particle.
 - A. velocity of a particle cannot be reversed without changing the direction of its acceleration. where a particle is projected verticaly downwards with a very large initial velocity its acceleration will exceed the acceleration due to gravity.
 - when the acceleration of a particle is zero it must necessarily be at rest.
 - Of the above statements
 - (1) Only A and B are true.
- (2) Only B and C are true.
- (3) Only A and C are true.

- (4) all A, B and C are true.
- (5) all A, B and C are false.

