GOOD SAISMAN TANKEDD

PAPER I

1.	Ampere - hour is a unit of
_	(1) current. (2) power. (3) energy. (4) time. (5) quantitiy of charge.
2 .	Consider the following quantities used in physics.
	(A) Electric charge (B) Mass (C) Temperature Which of the above is/are hase quantity/quantities of the international content of their (S) 2
	Which of the above is/are base quantity/quantities of the international system of Units (SI)? (1) B only. (2) A and B only. (3) A and C only. (4) B and C only. (5) all A, B and C
3.	Of the following colours, the angle of deviation due to a glass prism is greatest for
	(1) violet. (2) red. (3) blue. (4) green. (5) yellow.
4.	In the human eye the location of the image of an object is adjusted to appear on the retina by changing
	the
	(1) diameter of the pupil. (2) position of the lens. (3) focal length of the lens. (4) shape of the cornea. (5) diameter of the eye ball.
,	Assuming that no heat is lost to the surroundings, a final temperature of 50 °C could be obtained by
Э. •	mixing equal masses of,
	(1) ice at -5 °C and steam at 105 °C. (2) ice at 0 °C and water at 100 °C.
	(3) water at 0 °C and steam at 100 °C. (4) ice at 0 °C and steam at 100 °C.
	(5) water at 0 °C and steam at 100 °C. (4) ite at 0 °C and steam at 100 °C.
_	Figure A shows a circular hole of diameter d cut in a
0.	uniform aluminium sheet. Fig. B shows a uniform
	circular aluminium disc of diameter d. Fig. C shows a
	piece of uniform aluminimum wire bent to form a
	is a decided to the second sec
	changes in d of A, B and C respectively for a given (A) (B) (C)
	temperature change, then
	(1) $\Delta d_A = \Delta d_B < \Delta d_C$. (2) $\Delta d_A = \Delta d_B > \Delta d_C$. (3) $\Delta d_A < \Delta d_B < \Delta d_C$.
	(4) $\Delta d_A = \Delta d_B = \Delta d_C$. (5) $\Delta d_A < \Delta d_B > \Delta d_C$.
7.	An electric motor pulls a 100 kg mass to a height of 20 m in 2 s. The minimum power needed for this is
	(1) 2000 kW. (2) 1000 kW. (3) 200 kW. (4) 100 kW. (5) 10 kW.
	A vessel contains oil (density = 800 kg m ⁻³) and mercury (density = 13 600 kg m ⁻³). A metal sphere
	floats at the interface with one half of its volume immersed in mercury and the other half in oil. The
	density of the metal is
	(1) 1000 kg m^3 (2) 1700 kg m^3 (3) 4800 kg m^3 (4) 7200 kg m^3 (5) 12800 kg m^3
).	A soap bubble has a radius of 3 cm, If the surface tension of soap solution is 1.5 x 10 ⁻² N m ⁻¹ , the
7	excess pressure inside the bubble is
	$(1) 10^{-2} \text{ N m}^{-2}$ $(2) 2 \times 10^{-2} \text{ N m}^{-2}$ $(3) 1 \text{ N m}^{-2}$ $(4) 2 \text{ N m}^{-2}$ $(5) 4 \text{ N m}^{-2}$
0.	If M and R are the mass and the radius of the planet mars respectively and G is the universal constant of
	gravitation, the acceleration due to gravity at the surface of mars is
	(1) $\frac{GR}{M}$ (2) $\frac{R^2M}{G}$ (3) $\frac{GM}{R^2}$ (4) $\frac{GM}{R}$ (5) $\frac{GM^2}{R}$
	W R R
1.	When a current of 1 A is passed through a solution containing ions of an element, the mass of the
	element deposited in 1 s is called
	(1) Avogadros's number. (2) the Faraday. (3) its valency.
	(4) its electrochemical equivalent. (5) its atomic weight.
4.2	Which of the following 17
÷	current (1) potential
	difference (V) curves oboute
-	While him is
	(1) A only, $0 (A) V 0 (B) V 0 (C) V 0 (D) V$
	(1) A only.
	2) A and C only. 3) A, B and C only. (4) A, C and D only. (5) None of the above
_	The state of the above

-		v
	Which of the following statements made about sound and radio waves is true ?Each of the waves (1) can travel longitudinally or transversly. (2) can be reflected or refracted. (3) can be heard by human ear. (4) can travel faster in some materials than in air. (5) is eletromagnetic in nature.	
14	(5) is eletromagnetic in the figure shows a partofa micrometer screw gauge at a time when its two jaws are in contact. The figure shows a partofa micrometer screw gauge at a time when its two jaws are in contact. The zero error of the instrument is (1) 0.48 mm and it must be added to the final scale reading. (2) 0.48 mm and it must be subtracted from the final scale reading.	· []
-	(3) -0.02 mm and it must be added to the final scale rerading. (4) 0.02 mm and it must be subtracted from the final scale reading. (5) 0.03 mm and it must be added to the final scale reading.	
15	. Which of the following ray diagrams is incorrect ?	M
		i G
16	(1) (2) (3) (4) (5)	
	A ray of red light AO travelling in a glass medium is incident on the air inteface XX' at an angle of incidence \alpha as shown in the figure, when	re α i
×	o the critical angle for glass-air interface for yellow light, The subsequent path/paths of the red ray is/are	possibl
	(1) only OE. (2) only OD. (3) only OB. (4) OD and OE. (5) OC and OE.	1
17.	A-ray of light travelling through a medium of refractive index n_1 has a speed v_1 and wavelength	hλ, i
• • •	this ray then enters a second medium of refractive index n_2 . Which of the following confective index n_2 .	gives the
	speed and wavelength of the ray in the second medium. Speed Wavelength	
	$(1) \frac{n_2 \mathcal{V}_1}{n_1} \qquad , \qquad \lambda_1$	
	(2) $\frac{n_1 \nu_1}{n_2}$, λ_i	. 13
	$(3) \frac{n_1 \nu_1}{n_1} \qquad \qquad \frac{n_1 \lambda_1}{n_2}$	Ŋ
	(3) $\frac{n_1}{n_2} \frac{\nu_1}{n_2}$, $\frac{n_1}{n_2} \frac{\lambda_1}{\lambda_1}$ (4) $\frac{n_2}{n_1} \frac{\nu_1}{n_1}$, $\frac{n_2}{n_1} \frac{\lambda_1}{n_1}$	
	$(5) \frac{n_1}{n_1} \nu_1 , \frac{n_1}{n_2} \lambda_1$	
1 2	of tradeger are (relative molecular mass = 2) in a cotainer is 2 atmospheres. If	helium g
ιο.	(relative atomic mass = 4) is added to the container so that the pressure in the container	
	then the ratio, mass of hydrogen mass of helium in the container is (Assume that the termperature remains co	onstant)
	(1) 1 (2) $\frac{1}{2}$ (3) 2 (4) $\frac{1}{4}$ (5) 4	•
19.	The average kinetic energy of a certain amount of an ideal gas is K. when this gas is allow so that its volume doubles, the pressure of the gas is found to drop by a factor of thr	ed to exp
	average kinetic energy of the gas is $(1) \frac{K}{6} \qquad (2) \frac{2K}{3} \qquad (3) K \qquad (4) \frac{3K}{2} \qquad (5) 6K$	
20	(1) $\frac{1}{6}$ (2) $\frac{2}{3}$ (3) K (4) $\frac{1}{2}$ (5) or $\frac{1}{6}$ When a H shaped body shown in the figure is hung from point B, it hangs with point	F R F
2 0.	When a H shaped body shown in the figure is hung from point B, it hangs with point D directly below B, when the body is hung from point. E, it hangs so that the point C is directly below E. The centre of gravity of the body is more likely to be at	ŝ
	(1) E. (2) Q. (3) R.	影는
	(4) S. (5) T.	

21. When two objects A and B collide with each other, in which of the following, the action (FA) and reaction (FR) forces are correctly marked on objects?

22. Which of the following group of forces acting on a body, cannot have a zero resultant force? (1) 2N, 2N, 2N. (2) 2N, 3N, 4N. (3) 1N, 2N. 2N. (4) 1N, 1N, 2N. (5) IN, 2N, 4N.

- (1) 20 m s .
- (2) 10 m s⁻¹.
- (3) 2 m s⁻¹.

- (4) 20/11 m s⁻¹
- (5) 1 m s⁻¹.

A force F varying with time as indicated in the figure is applied to a wagon of mass 10 000 kg, which is initially at rest on frictionless horizontal rails.

After 100 s the speed of the wagon in ms is

- (1) 2.5.
- (2) 5.
- (3) 7.5.
- (4) 10. (5) 15.

- A. (4) D.
- (2) B. (5) E.

26.

The variation of the potential V along the direction OX due to a charged, parallel plate capacitor placed as shown in the figure is best represented by

Two point charges +q and -q are at a distance 2r apart, as shown in the figure. The points A, B and C are situated at a distance r from +q, while the points D and E are situated at a distance r from -q. Of the points given the largest positive potential can be found at

- (1) A.
- (2) B.
- (3) C.
- (4) D.
- (5) E.

28 Each of the metal spheres, A and B of radii 'a' and '2a' respectively carries a + Q charge. If A and B are രാവാരാരവ മും മ വാരാമി ശന്ത്രം.

- a charge of + Q/3 will flow from A to B.
- (2) a charge of + Q/3 will flow from B to A.
- (3) a charge of + Q/2 will flow from A to B.
- (4) a charge of + Q/2 will flow from B to A.
- (5) a charge will not flow from A to B or B to A.

36. Duringa power cut, a person tried to use twenty, 12 V car batteries to power some domestic electric	
appliances, which of the following appliances will not work? (1) An iron. (2) A filament bulb. (3) A ceiling fan.	
(1) An iron. (2) A filament bulb. (3) A ceiling fan. (4) A hot plate. (5) An immersion coil.	
37. The distance between any two consecutive degree marks of the scales of two mercury in glass	•
thermometers P and Q are found to be 1 mm and 3 mm respectively.	
Consider the following deductions made about the thermometers. (A) Thermometer Q has a smaller capillary bore radius than that of P,	
(B) Thermometer Q has a larger mercury bulb than that of P.	
(C) Readings taken with the thermometer Q is more accurate than those taken with P.	
Of the above statements	
(1) only A is true. (2) only B is true. (3) only C is true.	
(4) only A and C are true. (5) all A,B and C are true. 38. A dentist places a curved mirror 1 cm from a tooth and observes the image of the tooth, which is three	
times bigger than its natural size. The curved mirror is a	
(1) Concave mirror of focal length 1.5 cm. (2) Concave mirror of focal length 0.75 cm.	
(3) Concave mirror of focal length 2.0 cm. (4) Convex mirror offocal length 1.5 cm.	
(5) Convex mirror of focal length 0.75 cm.	
39. Two rays of light enter a box from one side and leave as shown in the figure. The possible optical	
element/s inside the box is/are (1) a concave lens and a convex lens.	
(2) arectangular glass block.	
(3) a convex lens and a rectangular glass block.	
(4) two convex lenses.	
(5) two concave lenses.	
40. Consider the following statements made about microscopes and telescopes	
(A) The magnifying power of a compound microscope becomes maximum when the final image is	
formed at the near point of the eye. (B) It is suitable to have an object lens with a large diameter for astronomical telescopes used to	
study very distant objects.	
(C) The magnifying power of an astronomical telescope becomes maximum when the final image is	
formed at infinity.	
Of the above statements (1) only B is true. (2) only A and B are true. (3) only A and C are true.	
(4) only B and C are true. (5) all A.B and C are true.	
41 A large vessel of water is placed inside a closed room having a relative humidity of 50%. If the	
temperature remains constant, as time goes on	
(A) absolute humidity inside the room will increase continuously.	
(B) relative humidity inside the room stays constant.	
(C) the dew point of the room becomes equal to the room temperature.	
Of the above statements] (1) only B is true. (2) only C is true. (3) only A and B are true.	
(1) only B is true. (2) only C is true. (3) only A and B are true. (4) only B and C are true. (5) all A,B and C are true.	
42./A hot-air ballon of constant volume contains air at 100 °C. (See the figure) When the	
42.7A not-air ballon of constant volume contains an at 100 C. (See the figure) when the	
temperature of the air inside the balloon is raised by 2 °C, the fraction of the air which escapes is approximately equal to (assume that the air behaves as an ideal gas	
1 224	
(1) $\frac{2}{373}$ (2) $\frac{2}{375}$ (3) $\frac{2}{100}$ (4) $\frac{373}{375}$ (5) $\frac{100}{102}$	
7 373 7 100 375	
43 A thin walled metal tank of surface area 4 m2 is filled with water which is heated by a 1 kW.	
immersion heater. The tank is covered with a 4 cm thick layer of insulation whose thermal conductivity	
is 0.2 W m ⁻¹ K ⁻¹ , In the steady state if the outer surface of the insulation is at 20 °C, the temperature of	
Consider on the many as tensor specification as the property of the grant and before the considered	
(1) 35 °C. (2) 50 °C. (3) 60 °C. (4) 70 °C. (5) 80 °C.	
×	

51. A current ! flows in the wire ABCD bent into the shape as shown in the figure. AB and CD are straight portions while BC has a shape of an are of radius R. The magnetic flux density at the centre O is (θ is given in radians)

- 52. Consider the following statements made about stationary waves produced in a pipe open at both ends.
 - (A) Allowed oscillation modes form pressure nodes at each of the ends.
 - (B) Allowed frequencies consist of all harmonics of the fundamental.
 - (C) The length of the pipe corresponding to allowed oscillation modes is always an integral multiple Of the wavelength of the wave.
 - (1) only A is true.
- (2) only A and C are true.
- (3) only A and B are true.

- (4) only B and C are true.
- (5) all A,B and C are true.
- 53. The diagram shows two boys pulling a bucket of water from a well. Which of the following graphs correctly represents the variation of the tension T in the strings with the angle θ .

- 54. A sphere of radius a attains a terminal velocity ν_0 when it falls down in a fluid of coefficient of viscosity η_1 and density d_1 . The same sphere is found to attain the same terminal velocity V_0 when it rises up in a different fluid of coefficient of viscosity no and density do. The difference of the densities of two fluids (d2-d1) is then proportional to
 - (1) $\frac{(\eta_2 + \eta_1) \nu_2}{a^2}$ (2) $\frac{(\eta_2 \eta_1) \nu_2}{a^2}$ (3) $\frac{(\eta_2 + \eta_1) \nu_2}{a^3}$ (4) $\frac{(\eta_2 \eta_1) \nu_2}{a^3}$

- 55. A glass sphere of radius 10cm has an internal cavity of length 5cm with one end coinciding with the centre as shown in the figure. If the cavity is viewed as shown, the length of the cavity appears to be (reactive index of glass $\frac{3}{2}$ =)

(2) 7 cm

(3) 8 cm

(4) 9 cm

56.

(5) 10 cm

A charged capacitor is connected to the cap of a gold leaf electroscope as shown in the figure.

When an uncharged dielectric slab is inserted with a certain velocity from one side and removed from the other side of the capacitor as shown, the variation of deflection (θ) of the leaf with time (t) is best represented by

- - 57. A Simple pendulum which caries a positive charge is placed in between the horizontal plates of a parallel plate capacitors, as shown in the figure.
 - If T is the period for small oscillations when a potential difference of V is applied to the capacitor, the variation of T2 with V is best represented by

58. Two air samples, one dry and the other containing a little amount of water vapour (unsaturated) are used in an experiment to verify charles law. If the masses of the two samples are the same Which of the following pressure (P) versus temperature (θ) curves would you expect for the two samples ?

Curve X represents the sample with water vapour Curve Y represents the sample without water vapour.

59. A certain quantity of curshed ice at - 80°C is heated at a constant rate until all the ice is converted into steam. Specific heat capacity of water is greater than that of ice. Which of the following graphs best represents the variation of the temperature (θ) with time (t)?

60. A circular conducting loop S passes through a region of uniform magnetic field with a constant velocity as shown in the figure. Which of the following graphs best represents the variation of the induced current (l) in the loop with time (t)?

