BEE AVERUNATES 1997

PAPER I

23.	The weight of	an object on the earth se	th surface is 600N.	At a height of one c		e earth
	(1) 150N	(2) 240N	(3) 300N	(4) 600N	(5) 2400N	ا الحجا ا
24.	the ground le (Neglect the a (1) Speed	ects of masses M and evel. Which of the f ir resistance) nal force acting on m	ollowing is same ro (2) Kineti	c en rav (3)	h and h respectively before hitting the Time of travel	grou
25	A spring a to height of 2 m. by a minimum (1) 100mm	y gun has to be con In order to project to distance of (2) 80mm	he same bullet for a	der to project a bu vertical of a m the s (4) _Umm	llet vertically upwa pring should be con (5) 10mm	rds to a
	25cm, the ma: (1) 4	lens of focal length ximum magnifying po (2) 5	(3) 6	(4) 8	(5) 10	
27.	The ratio ap	ce moves towards a s parent frequency hea equency cmitted by the	rd by the obscirer is	th a speed ½ of the		ir.
	(1) %		(3)-1/2 (4		12V E	
	an ammeter o	shown, E is a call of f negligible. When the (2) 1A	e switch S is closed (3) 2A (4)	the reading of A is	A 15 F=30	2
29	magnetic field shown in the particle is	rticle having a veloce of flux density B at figure. If the charge Bq	nd follows a circular	path of radius A as	,	e all
	$(1) \frac{BqR}{V} .$ $(4) \frac{BqR^2}{V} .$	$(5) \frac{R}{R}$	(3) <u>v</u>	·	A	BIF
	7/	e which corresponds	to the truth table she	own is	0	1 1
	A (1)	F B (2)	F A	F A B	(5)	
	shown in the vessel and the	gth <i>l</i> is fitted to a verifigure. If the intersectube is completely of the vessel by the og (2) (A) (4) a(1)	filled with a liquid	of density ρ , the	s a and the	
	water upto a with half of cylinder is to	metallic vessel have height h. When im its height below be floated with its side the cylinder has (2) 2h	the water surface almost entire heigh	as show. If the		<i>i</i> , ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫, ∫,
			•			

						1 41
23	surface the weight	object on the earth s of the object will be (2) 240N	urface is 600N.	At a height of one ea	orth radius above th	ne earth
24						L-f:
	the ground level. (Neglect the air re (1) Speed	of masses M and 2N Which of the follo sistance)	wing is same for	or both masses just	before hitting the	grou grou
		force acting on masse	(2) Kinet (5) Mom		Time of travel	1-hi-
25	height of 2 m. In	in has to be compre order to project the s				
•	by a minimum dis (1) 100mm	tance of (2) 80mm	1) 50mm	. (4) _Umm	(5) 10mm	
26	. A converging lens	s of focal length Sci	m is used as a r r that can be ach	magnitying lens. If t		he eye
	(1) 4	(2) 5	(3) 6	(4) 8	(5) 10	
27	The ratio appare	oves towards a station of the second by the second by the second to the second by the	y the obscrrer	vith a speed ¼ of the	speed of sound in	air. المؤما
7,					ω	الفي
	(1) 1/4	(2) 1/2	(31-1/4	(4) 4/3 (5) 4		
28.	In the circuit show	wn, E is a call of e.	m.f 12V and in	ternal resistance 3Ω	A IS 12V E	
	(1) 0.5A	gligible. When the sv (2) 1A		(4) 4A (5) 8		0900
29	magnetic field of shown in the figu	e having a velocity flux density B and fure. If the charge or	ollows a circula	r path of radius R as		
*,- ,	particle is $(1) \frac{BqR}{V}$	$(2) \frac{Bq}{R}$	(3) $\frac{Bq}{v}$	<u>R</u>	. , 5	R
	$(4) \frac{BqR^2}{V}$	$(5) \qquad \frac{BqV^2}{R}$			- LA	BIF
30.	The logic gate wh	ich corresponds to t		F	10	
	A B F B		-F A-R	F A	(5)	
	(1)	(2)				一日子
	shown in the figu	I is fitted to a vesse are. If the internal a be is completely fill	area of cross-s	ection of the tube i	s 'a' and the	
•		he vessel by the lig (2) $(A - a)$	uid is Lpg = a(ll)	ρg		
	(3) Alpg		Dpg 5			ıŶ
,	water upto a heig with half of its cylinder is to be (allic vessel having the h. When immed height below the floated with its alm the cylinder has to (2) 2h.	rsed in water, water surface nost entire heig	this cylinder floats as show. If the		2h
(4) 3h.	(5) $\frac{7}{2}-h$				•:

97/

- made about the two cities.
- (A) The temperature of city Y should be twice that of X
 - (B) The relative humidity of city X should be twice that of Y. (C) The absolute of the city X at its dew point should be greater than that the city Y at its dew point.
 - Of the above statements (1) only A is true (3) only A and C are true (2) only C is true (4) only B and C are true (5) all A, B and C are true
- 43. Capillary rise of water inside a metallic capillary tube of internal radius R is found to be same as . of a glass capillary tube of internal radius r. If the angle of contact between water and glass is zero, the angle of contact between water and the metal is
- (3) $\cos^{-1}\left(\frac{R}{r}\right)$. (4) $\cos^{-1}\left(\frac{r}{2R}\right)$. (2) $\cos^{-1}\left(\frac{r}{R}\right)$ 44. Which of the following graphs best represents the relationship between voltage (V) and time (t) for the output from a power supply consisting of an alternating current generator and a full wave rec
- without smoothing ? (5)45. Consider the following statements made about two cells having same e.m.f., but one with a
 - internal resistance and the other with a finite internal resistance. (A) Both cells produce infinite currents when their termainals are short circuited. (B) Both cells show same potential difference across the terminals when they are connected at identical resistors.
 - (C) One of the cells gets heated up when a large current is drawn from it Of the above statements
 - (1) only A is true (2) only C is tue (3) only B and C are true
 - (4) only A and C are true (5) all A, B, and C are true
- 46. In the circuit shown the voltmeter reads 2V when the ammeter reading is made to zero, and the ammeter read 1A when the voltmeter reading is made to zero (for a short time). If the ammeter has negligible internal resistance, the internal resistance of the cell is
- (3) 1Ω . (1) 0 $(2) 0.5\Omega$ $(4) 2\Omega$ $(5) 3\Omega$ 47. Three isolated capacitors having capacitances of 1µF, 2µF and 3µF carry charges 2μ C, 6μ C and 6μ C respectively as shown in the figure. If the positive
 - plates of the capacitors are connected together, the ptentials (in volts) at the other plate terminals, A,B and C with respect to the positive plates are (2) 2, 3, 2. (3) $\frac{7}{3}$, $\frac{7}{3}$, $\frac{7}{3}$. (4) $-\frac{7}{3}$, $-\frac{7}{3}$, $-\frac{7}{3}$. (1) -2, -3, -2.
- 48. The variation of magnetic flux density, B, along the axis of a short solenoid, shown in figure carrying a constant current is best represented by,

- 49. The loop shown in the figure carries a current I. The magnetic flux density at O is
- (2) $\frac{\mu_0 I}{\alpha} \left(\frac{3}{\mathcal{R}_1} + \frac{1}{\mathcal{R}_2} \right)$. (3) $\frac{\mu_0 I}{\alpha} \left(\frac{1}{\mathcal{R}_1} + \frac{1}{\mathcal{R}_2} \right)$ 10 f x 3 + Mol x 10 (5) $\frac{\mu_o I}{2} \left(\frac{2}{R_1} + \frac{1}{R_2} \right)$ Yor Line to Hai
- 000000

 $\otimes \otimes \otimes \otimes \otimes \otimes$

50. A flat copper plate is placed perpendicular to a uniform magnetic field B and a current I is passed through the plate as shown in the figure. At the steady state

- (2) a current will flow from Y to X
- (3) a negative voltage will develop at X with respect of Y.
- (4) a positive voltage will develop at X with respect of Y.
- (5) neither a current flow nor a voltage drop will be resulted across X and Y.

52. A metallic vessel containing a certain of water is beated niformdy at a constant rate. If the heat loss to the surroundings is neglected, then the rate of absorption of heat (R) by the vessel when plotted against time (t) is represented by

53. The two ends of a well lagged uniform rod APQB are maintained at 100 C and 0 C as shown in the igure. The portion PQ c the rod is made of a different material, the thermal conductivity of which is smaller than that of the rest of the material of the rod. Once the steady state is achieved, which of the following graphs best represents the variation of the temperature (θ) along the ro?

54. In the potentiometer circuit shown, the cell P has e.m.f. Ep and an internal resistance r, while the cell Q has an e.m.f. Eq and an internal resistance rq. Consider the following reasons given for not achieving a balance point in the above arrangement.

- (A) $E_P > E_Q$ and $r_P = 0$ $r_Q > 0$ (B) $E_P < E_Q$ and $r_P > 0$ $r_Q = 0$ (C) $E_P = E_Q$ and $r_P > 0$ $r_Q > 0$

Of the above reasons

- (1) only A is true
- (2) only B is true
- (3) only C is true

- (4) only B and C are true
- (5) all A, B, and C are true

55. A student holds a thin strip of paper below his lower lip and blows air horizontally over it. If the surface area of one side of the paper is A and the mass of the strip is m the speed, v, with which the air should be blown in order to keep the strip horizontal is (the density of air = ρ)

(1)
$$v = \left(\frac{2mg}{\rho A}\right)^{N}$$
. (2) $v = \left(\frac{mg}{\rho A}\right)^{N}$. (3) $v = \left(\frac{mg}{2\rho A}\right)^{N}$. (4) $v = \left(\frac{3mg}{\rho A}\right)^{N}$. (5) $v = \left(\frac{mg}{3\rho A}\right)^{N}$.

56. Two straight wires, AB and CD carrying equal curente I are placed symmetrically and at right angles to each other as shown in the figure. AB is infinitely long and CD has a fmite length. The magnetic effect on CD due to AB gives rise to a

- (1) resultant force and a clockwise coupic
 - (2) resulcant force and an anti-clockwise couple
 - (3) zero resultant force and a clockwise couple
 - (4) zero resultant force and an anti-clockwise couple
 - (5) zero resultant force and a zero couple
- 57. Which of the following I V carves is for a filament electric bulb?

58. Staight wave fronts of a wave of wavelength λ are incident on an obstrucation of width d. Which one of the following diagrams best represents the behaviour of the wavefronts if $d \gg \lambda$

59. A person who is at a river bed looks upwards through the water surface of the river as shown in the figure. The person's eye is located at P and the water is clear and still. Which of the following diagrams best represents the view seen by the person?

60. A small square loop of a wire having a negligible mass is moved at a constant velocity V across a uniorm magnetic field as shown in the figure. The variation of the external force F that has to be applied to maintain its constant velocity V with time (t) is best represented by

