General Certificate of Education (A/L) Examination 2004 - April Biology 1-11 Answers

2004 August - MCQ Answers

1 - 3	16 5	31.3	46 - 5
2 - 2	17 - 4	32 - 2	47 - 1
3 - 2	18 - 2	33 - 4	48 - 4
4 - 2	19 - 5	34 - 1	49 - 1
5 - 2	20 - 1,4	35 - 5	50 - 2
6 - 4	21 - 1	36 - 2	51 - 5
7 - 3	22 - 2	37 - 2	52 - 4
8 - 2,3	23 - 4	38 - 1	53 - 3
9 - 5	24 - 5	39 - 2	54 - 1
10 - 2	25 - 4	40 - 1	55 - 2
11 - 4	26 - 2	41 - 2	56 - 5
12 - 5	27 - 2,5	42 - 4	57 - 1
13 - 2	28 - 5	43 - 4	58 - 4
14 - 4	29 - 2	44 - 2	59 - 5
15 - 3	30 - 2	45 - 5	60 - 1

Part A - Structured Essay

- A (i) 1. All organisms are composed of one or more cells
 - 2. The basic structural unit of organisms is the cell
 - 3. The basic functional unit of $\frac{1}{4}$ and $\frac{1}{2}$ 4. All cells arise from pre existing cells $\frac{4}{4}$ x $\frac{1}{2}$ = 6 marks 3. The basic functional unit of organisms is the cell

$$4 \times \sqrt[4]{\frac{1}{2}} = 6 \text{ marks}$$

(ii)

organelle	protein	Lipid	RNA	DNA	Function
Nucleus	+	+	+	+	storage/ transter of genetic information control of cellular activities/ (any activity)
2. Mitochondria	+	+	+	+	aerobic respiration / ATP production.
3. E.R.	+	+	-	-	Transport of proteins / lipids synthesis/ steroids synthesis/ synthesis of proterins/ Detoxification
4. Golgi Appa- ratus	+	+	-	-	collection/ packaging/ distribution of molecules synthesized in the cell/ formation of Lysosome
5. chloroplast	+	+	+	+	photosynthesis

0	Ribosome		,		Princing
7	Lysosome	+			* sestion:

45 marks

- Protein/globular protein (B) (i) a
 - phospholipid molecules b.
 - phospholipid bilayer

$$3 \times 1/\frac{1}{2} = 4.5 \text{ marks}$$

- (ii) 1. It acts as an outer boundary
 - 2. Regulating entry of water & tons & certain organic molecules in to the cell
 - 3. It regultates the exit of waste material
 - 4. It maintains osmotic balance within the cell
 - 5. It receives information generates sighals to coordinate activities between cells/ cell recognition

Any 3 x
$$1/\frac{1}{2}$$
 = 4.5 marks

- (iii) 1. phospholipid molecules are movable giving fluidity
 - 2. protein molecules are arranged in a manner giving a mosaic structure

$$2 \times 1/\frac{1}{2} = 03 \text{ marks}$$

P	hase of mitosis	A Major change taking place in the cel		
*	Prophase	★ Condensation of chromosomes		
- 1		★ Nuclear envelope breaks down/		
		disappears.		
		★ Spindle is formed		
		★ Nucleolus disappears		
•	Metaphase	chromosomes become aligned at the middle of the cell		
1	★ Anaphase	★ Centromere divide/ chromatids are drawn to opposite ploes of the cell.		
	Telophase	★ Nucleus is reconstruated		
		reformed around each set of		
	1	chromatides.		
		★ Spindle disassembled		
- 1.	Cytokinesis	 Nucleolus re - appears. Cytoplasm divides (physically into 		
"	Cytokilosis	two daughter cells)		

		$10 \times 1/\frac{1}{2} = 15 \text{ marks}$
	Mitosis	Meiosis
1.	Chromosome number/ kept constant.	chromosome number is halved/reduced
2.	Genetic stability maitained/	changed.
3.	Homologous chromosomes behave independently during prophase/ no pairing.	Homologous chromosome do pairing / unite/ syn4pst during prophase.
4.	2 nuclei/ 2 cells formed from each mother nucleus.	4 nuclei / 4 cells are formed from each mother nucleus /
	Crossing over does not take place/ chiasma not formed	crossing - over takes place
6.	time.	takes comparatively assess
7.	takes place in haploid and	takes place only in diplosi

diploid cells/nuclei

(2n) nuclei/ cells.

single, division take place

Double division take

Any 5 x $1/\frac{1}{2}$ = 7.5 marks

(D)	(i)	
		ı

	Process	Site	Number of ATP molecules produced
	Clycolysis	cytoplasm Matrix of	2 ATP/4 ATP
stage 2	Klebs cycle	mifochondria	2. AIP
stage 3	Electron Transport	inner mem brane/ cristae/ of Mitochondria	34 ATP

$$9 \times 1/\frac{1}{2} = 14.5 \text{ marks}$$

- (ii) a. seed starch
 - b. Liver Glycogen

$$2 \times 1/\frac{1}{2} = 03 \text{ marks}$$

(jii) Diastase/Amylase

 $1 \times 1/\frac{1}{2} \text{ marks} = 1.5 \text{ marks}$ $\text{Total } 69 \times \frac{1}{2} = 10 \cdot \frac{1}{2} \text{ marks}$ Maximum = 100 marks

02. A (i) Transport

$$1 \times \sqrt{\frac{1}{2}} = 1.5 \text{ marks}$$

- (i) Transport $1 \times \sqrt{\frac{1}{2}} = 1.5 \text{ marks}$ (ii) a Presence of a pumping device/ heart
- b. Presence of blood vessels and
 - c. Presence of liquid medium/ transport medium. $3 \times 1 / \frac{1}{2} = 4.5 \text{marks}$
- (iii) A system where
 - 1. Blood is pumped from heart
 - 2. Through arteries,
 - 3. Flows through capillaries and
 - 4. Flows back to heart through veins $4 \times 1 / \frac{1}{2} = 06 \text{ marks}$

$$4 \times 1/\frac{1}{2} = 06 \text{ marks}$$

(iv)

closed blood circulation	open blood circulation
(a) Blood flows through vessels/ blood contained in vessels	Blood passes through body cavity / organs are bathed in blood
(b) Exchange of material through capillary walls.	Exchange of material direct

$$2 \times 1/\frac{1}{2} = 03 \text{ marks}$$

(v) Coelenterata/ platyhelmithes/ Nematodes.

$$1 \times 1/\frac{1}{2} = 03 \text{ marks}$$

- B. (i) 1. Mid dorsally,
 - Immediately below the body wall/ terga.
 - 3. Long
 - 4. Tubular structure,
 - 5. Consists of 13 chambers,
 - 6. With 2 (lateral) ostea,
 - 7. Fitted with valves

$$7 \times 1/\frac{1}{2} = 10.5 \text{ marks}$$

(11)

Heart of cockroach	Heart of earth worm
13 chambers	1 chamber
Ostea present	No ostca,
Connected to blood vessels	connected to blood
only	
at one end / anteriore end	vessels at both eads

 $1 \times 1/\frac{1}{2} = 1.5 \text{ marks}$

(iii)

cardiac muscle fiber	skeletal muscle fibers
Involuntary,	voluntary,
Myogenic	Non myogenic/
	neurogenic
Doesnot fatigue	Fatigues

Any 2 x $1/\frac{1}{2} = 3$ marks

- (iv) Involuntary action
- $1 \times 1/\frac{1}{3} = 1.5 \text{ marks}$
- (C) (i) Liquid portion of blood
- $1 \times 1/\frac{1}{2} = 1.5 \text{ marks}$
- (ii) water
- $1 \times 1/\frac{1}{2} = 1.5 \text{ marks}$
- (iii) a. Dissolved in plasma
 - b. In combination with haemoglobin/ as carbamino
 - hacmoglobin
 - c. As HCO,
- $3 \times 1/\frac{1}{3} = 4.5 \text{ marks}$
- (iv) 1. It has high affinity for heamoglobin/ high affinity than that of O,
 - 2. Combines irreversibly with heamoglobin
 - 3. Thus decreases oxygen binding ability of heamoglobin/ decreases the amount of haemoglobin oxyhemoglobin Produced

 $4 \times 2.5 = 10 \text{ marks}$

Haemoglobin, Haemorythrin

any 2 x $1/\frac{1}{2} = 03$ marks

(D) (i)

Tissue	constituent cell type	substances transported
kylem	(xylem) vessels / vessel elements (xylem) tracheads Fibres parenchyma cells.	water minerals/ lons
phloem	sieve tube comparnion cells parenchyma cells Fibers	sucrose Amino acids Hormones Minerals/ ions

Any 15 x $1/\frac{1}{2}$ 22.5 marks

- (ii) 1. Diffusion
- Inbibition
- 2. Osmosis
- Massflow

 $4 \times 1/\frac{1}{2} = 06 \text{ marks}$

- (iii)1. In the root hair cell water potential is low when compared to that of soil,
 - Due to dissolved substances in the cell sap Water moves from high water potential to
 - lower water potential

- Therefore water moves from soil to root hair cells.
- When water enters the root hair cells w, decreases

and

- 6. W increases
- 7. water enters the cell (until) w w
- w of root hair cell increases than that in the adjacent cortical cells.
- And water moves from root hair cell into the cortical cell
- 10. Along water potential gradient.

10x 1/1- 15 marks

- Cut equal strips of potato and measure leagth/ cut strips of colocasia measure curvature / obtain Rheo epidermal peels.
 - Prepare sucrose solutions of different molarities.
 - Place a strip of potato/ colocasia/ Rhoe epidermal peels in each solution for 20 - 30 min.
 - Measure the length of potato strips/ curvature of colocasia/ count the number of plasmolysed cells.
 - Draw agraph change of length / change of curvature/ percentage of plasonolysed plasmolised cells on the y axis and molarity on x-axis
 - The point of intersection is the value equelent to cell saps concentration (ψ_s) point at which 50% cell are plasmolysed
 - 7. using tables calculate the water potential.

 $7 \times 1/\frac{1}{2}$ =10.5marks Total 68 x $1/\frac{1}{2}$ = 102 Maximum = 100 marks

- (i) a. Increases the number of organisms / produces new generation.
 - b. Transer genetic information / parental characters to the next generation / offspring

2 x 2= 04 marks

(ii) Sexual reproduction	Asexual reproduction
a. Fusion of gametes/ fertilization	No fusion of gametes /no fertilization
b. Meiosis occurs c. variations (high)	Mitosis occurs No variations
d. offspring genetically not identical to parents.	

4 x 2= 08 marks

(iii) 1. Resutts in (greater) variation and therefore 2. evolution (potential) is high

2 x 2 = 04 marks

(vi) Development of an organism from the ovum without fertilization

1 x 2 = 02 marks

(vii) (Males of) Honey bee

1 x 2 = 02 marks

- (B)(i) 1. Fragmentation
 - 2. Budding
 - 3. Binary fission
 - 4. Multiple fission

4 x 2 = 08 marks

- (ii) Pragmentation Planarial Rabbon warms Budding - Hydra Binary fusion - Amoebal Parametus Multiple fusion - Planardium
- (iii) Fragmentation spirogyral
 Budding yeastly saccharomycar
 Binary fission Bacteria

(3+3) x 2 = 12 mark

- (C)(i) a Dorsal (hallow) nerve cord
 - b Presence of notochord
 - c Presence of pharyngeal/ visceral clefts
 - d Post anal tail
 - e Ventral heart

5 x 2 = 10 mark

<u> </u>	
Chondrichthyes	Heterocercal caudal fin/ placoid scales. No poer culum/gill s lite open separately/ 5 pairs of gill slits.
Osteichthyes	Operculum / cycloid scales/ ctenoid scales Homocercal - tail Homocercal caudal fin
Amphitia Reptilia Aves Mammalia	Moist skin/ scale less skir Dry skin/ scales Beak / feathers/ Hair/ mammae/ extema pinna.

6 x 2 = 12 mark

(iv) Male gametophyte

1 x 2.5 = 2.5 mark

(D) a - 10	i - 13
b - 4	i-7
c - 15	k - 16
d - 8	1-5
e-3	m - 11
C-12 ·	n - 14
g - 1	0-6
h - 2	n - 9

15 x 2 = 30 marks Tatal 50 g 2 = 100 marks

 (i) Natural materials obtain from environment that are used in everyday life for economic development.

1 x 2.5 = 2.5 marks
(ii) Resourse that are regenerated at a rate greater then or

- equal to the rate they are consumed. 1 x $\frac{1}{2}$ =03 mark
- (iii) Agricultural production/ livestock production/ fisherics forests/ grassland/ water/ air/ soil. 2 x 2/1 = 05mark
- (iv) Petroleum/ fossil fuel, mineral resources (any example) $2 \times 2 / \frac{1}{2} = 05$ mark
- (v) Use of natural resources while ensuring their benefits for future generations of people. $1 \times 2/\frac{1}{2} = 2.5 \text{ mark}$
- B. (i) a Consist of living (biotic) and non living (abiotic) components.

h These components interact with each other It is an easily recognizable (functional) unit

There is an nutrient flow and

d There is an area of the system 5 x 2/2 = 12.5 mark

(ii) Grass - Grass hopper -→ frog —→ snake or any appropriate food chain

C. (1) * Results in erosion * Clearing of mangroves

* Destruction of habitats. * and loss of biodiversity

Quality of water is effected in the natural water bodies due to/ Salinity increese.

* Pollution / waste from prawn farms.

* Blocking drainage resulting in

* Loss of grazing area for cattle. 7 x 2/1 17.5mark

(ii) a Tiger prawn b. White prawn

$$2 \times 2/\frac{1}{2} = 5 \text{ mark}$$

(iii) SEMBV MBV

$$2 \times 2/\frac{1}{2} = 5 \text{ mark}$$

(iv) * Maintaining the water quality at optimum range (required by shrimps)

* Early detection of diseases.

* Providing proper u. * Use of disease free seeds $3 \times 2/\frac{1}{2} = 7.5 \text{ mark}$

$$3 \times 2/\frac{1}{2} = 7.5 \text{ mark}$$

(v)

Extensive	Intensive
Depends on natural food/	Depends on supplementary
no supplementary food/	food
Low stoking density	High stoking density
No need to maintain water quality	Water quality is maintained
Yield is low	Yield is high
Harvesting by nets.	Draining and collecting with nete.

$$5 \times 2/\frac{1}{2} = 12.5 \text{ marks}$$

D. (i) Economic injury/level

The density of the pest population which causes an economic loss.

 $1 \times 2/\frac{1}{2} = 2.5 \text{ marks}$

Economic threshold

The density of pest population at which the control measures are applied

 $1 \times 2 / \frac{1}{2} = 2.5 \text{ marks}$

- (ii) 1. Part of the crop plant attacked
 - 2. Economic value of the crop 3. Crop variety
 - 4. Time
 - 5. Place
 - Cost

Any 4 x $2/\frac{1}{2}$ = 10 marks

- (iii) 1. Organochlorines/ chlorinated hydrocarbons. Organophosphates.
 - 3. Carbamates
 - 4. Pyrethroids

 $4 \times 2/\frac{1}{2} \approx 10 \text{ marks}$ Total $42 \times 2/\frac{1}{2} = 105$ Maximum = 100

Pari B - Essay

- 1. Co, diffuses into the leaf.
 - 2. Through stomata
 - 3. Dissolves in water/ moisture of palisade cells/ messophyll
 - 4. Diffuses through the cell membrane/ cytoplasm.
 - 5. Into the stroma of
 - 6. Chloroplast
 - Co, combines with 5c compound
 - 8. Called RuBP
 - Which is catalyed by an enzyme ribilose bisphosphate carboxylase
 - To form a 6c compound.
 - 11. Which is unstable
 - 6c compound immediately breaks down
 - 13. Into 2 molecules of
 - 14. 3c compound
 - 15. P. G. A / glycerate 3 phosphate,
 - 16. Which is the first stable product in photosynthesis
 - P.G. A / glycerate 3 phosphate is converted to PGAL/ triose phosphate.
 - 18. Using some of the ATP
 - And all NADPH2
 - 20. Produced during the light reaction
 - 21. Part of PG A1 in used for
 - 22. Regeneration of CO, acceptor.
 - 23. Through a series of reactions.
 - 24. Produce RuMP
 - 25. RuMP combines with
 - 26. Rest of ATP
 - And regenerate RuBP
 - 28. Remaining PGAL/ triose phosphate
 - 29. Undergose a series of reactions.
 - 30. To produce hexose sugar
 - Hexose sugars are polymerized/ converts to from starch Any 38 x 5 = 150 marks
 - (i) 1. Totaliy of organisms / in the biosphere and consists
 - 2. Species diversity
 - 3. Genetic diversity
 - 4. Ecosystem diversity
 - (ii) 5. Detorestation
 - Fragmentation of lands/ habitats
 - Introduction of alien species
 - Agricultural practices
 - 9. Pollution
 - 10. Over exploitation
 - (iii)11. For the maintenance of balance in ecosytem,
 - Maintenance of food chains in the ecosystem
 - 13. Maintenance of hatural biogeochemical cycles and
 - Hydrological cycle
 - 15. For aesthetic value
 - 16. Many plant species are used as food/ medicine other domestic products
 - 17. By man and
 - 18. To preserve variety of plants and animals which are products of (several billon years) of evolution
 - (iv) The 2 maijor bio diversity conservation methods are in - situ and ex - situ con servation
 - Insitu conservation

- Conservation of any component of biodiversity (species/ geneic/ ecosystem) in ther natural habitat.
- 21. Reproduction is facilitated in the natural habitat.
- Large enough populations for self sustenance should be ensured and
- 23. Adequate extent of habitats should be ensured.

Methods of in - situ conservation

- Establising protected areas/ sanctuaries/ man and biosphere reserves.
- 25. Species reintrodutions
- 26. Ex situ conservation is the
- Conservation of any component of biodiversity outside their natural habitats.
- 28. Conditions similar to the natural habitats are provided.
- Reproduction and surrival are ensured/ facilitated outside their natural habitats.

Methods of ex - situ conervation

- Establishing gene banks/ seed banks/ germplasm centres.
- 30. Botanical / zoological gardens/ turtle hatcheries.
- 31. Captive breeding/artifical breeding.

Any $30 \times 5 = 150 \text{ marks}$

- (i) 1. Mutations are changes in the genetic material/ DNA/ genome.
 - They are heritable/ can be transmitted to the future generations.

2 x 5 = 10 marks

- Mistakes taking place at the time of replication of DNA/ abnormal segregation of chromosomes during meiosis.
 - 4. Mutagenic chemicals.
 - 5. Radiations (uv rays and x rays)

 $3 \times 5 = 15 \text{ marks}$

- (iii) 6. Chromosomal mutations.
 - Mutations involving the change of chromosome number.
 - 8. Mutants missing one chromosme (Aneuploidy)
 - 9. Individual with only one x chromosome (total 43),
 - 10. Turner's syndrome
 - 11. Individuals with extra chromosome (total 47)
 - 12. Klinefelter 's syndrome/ Downs syndrome.
 - Increase/ change of entire seto of chromosomes/ (polyploidy)
 - 14. Chromosome numbers 3n, 4n, 5n etc.
 - 15. Which is common in plants (flowering plants)
 - 16. Change in the structure of chromosome.
 - 17. Gene mutation
 - 18. Mutation affecting single gene.
 - 19. Albinism
 - 20. Hacmophillia
 - 21. Colour blindness
 - 22. Sickle cell anemia
 - Thalassemia
 - 24. Mutated genes are (normally) ressesive.

(b)

- Some mutantions are responsible for favovable characteristics.
- 26. That are advantages for the survival of organisms.
- Therefore organisms with such variations have a higher chance to be selected (for reproduction)

- 28. Thus these mutations are successfully passed from generation to generation.
- 29. Such Mutant organisms can compete with non mutant organisms
- 30. This process is natural selection which
- 31. Leads to the evolution of the species
- 32. Some mutations are disadvantages (harmful or lethal) and
- 33. Such mutants are removed.

Any 30 x 5 = 150 marks

- 04. (i) Major physical changes
 - Softening of food
 - 2. Pigmentation
 - 3. Slime or gum formation
 - 4. Toxin accumulation
 - 5. Development of bad odour

Major chemical changes.

- 1. Conversion of proteins into
- 2. Amino acids
- 3. Ammonia
- 4. Amines
- 5. H,s
- 6. Fermentation of
- 7. Carbohydrates forming
- 8. Acids/dicreasing P,
- 9. Alcohol
- 10. Gases
- 11. Conversion of lipids into
- 12. Fatty acids
- 13. Glycerol
- (ii) Intermal factors
 - I. PH
 - 2. Moisture content
 - Nutrient content
 - 4. Biological structure

External factors

- 5. Temperature
- 6. Relative humidity
- 7. Presence or absence of O,
- (iii) 1. PH affect microbial growth
 - 2. Most micro organisms grow best at neutral PH
 - 3. Only few microorgamisms grow at low/ acidic PH
 - Fungi and yeasts grow at low PH and spoil acidic foods/
 fruits.
 - Bacteria grow at neutral PH (5 7) and spoil food such as meat / fish
 - 6. Moisture / water affects growth of microorganisms.
 - 7. High moisture containing food such as
 - 8. Meat / fish/ milk spoil easily by
 - 9. bacteria
 - 10. Low moisture containing food such as
 - 11. Bread/biscuits
 - 12. Spoil by molds/ fungi
 - Dried foods such as.
 Milk powder/ flour
 - 15. Are not easily spoiled
 - 16. Suger/ salt containing food (high Concentration)
 - 17. Where water availability is low are
 - 18. Spoiled by xerophillic / halophillic
 - 19. Molds/ yeosts.
 - 20. Microbial growth is affected by variety of nutrients.
 - 21. Nutrient rich food such as
 - 22. Milk/ meat are

- 23. Easily spoiled by microorganismg/Bacteria
- 24. Nature of the covering of some food/ hard cover/ epicrp
- 25. Fruits/ eggs
- 26. Prevents entry of microorganisms.
- 27. Prevents spoilage

Any 30 x 5 = 150 marks

- 1. Bean shaped/concave medially and convex laterally
 - 2. Surrounded by renal capsule.
 - 3. Hillus on the mediun surface
 - Trough the concave region blood vessels (lympvessels) and nerves pass.
 - Ureter leaves/ originates from the (concave) medial region.
 - 6. Outermost region is the cortex
 - 7. Inner medulla
 - 8. Medulla consists of renal pyremids / cone shaped
 - 9. Which have a striated appearance
 - 10. Renal columns
 - 11. Consisting of cortical tissue
 - 12. Are present between pyramids
 - The apices of pyramids are directed towards the renal pelvis
 - 14. Which is funnel like
 - 15. And located closer to medulla
 - 16. It opens to the ureter/ ureter starts for renal pelvis
- (ii) 17. Takes place in the nephron

Three processes

- 18. Ultrafiltration
- Selective resorption
- 20. (tubular) secretion
- 21. Ultra filtration is filtration of blood.
- 22. Under high pressure
- Through capillary wall of glomerulus and inner wall of Bowman capsule/ in the Malpigman corpuscle.
- 24. 25 Filters water, salts/ions, amino acids, glucose, urea, vitamins, some drugs etc. (mark each maxium 6 marks)
- 26. Plasma proteins, blood cells are not filtered
- Selective resorption in resorption of certain substances from glomerular filterate in to blood/ preitubular capillaries.
- 28. In the proximal convoluted tubule
- 29. Active resorption of Na
- 30. Active resorption of amino acids
- 31. Active resorption of glucose
- 32. Obligatory resorption of water
- 33. Passive resorption of Cl
- 34. Passive resorption of urea
- 35. Passive resorption of HCO, take place
- 36. In the descending limb of the loop of Henle.
- Passive resorption of water/ resortion of water due to osmos take place.
- 38. In the ascending limb of the loop of Henle
- 39. Active resorption of Na'
- 40. Passives resorption tubule
- 41. In the distal convoluted of tubule

- 12 Active resorption of Na
- 43. Passive resorption of CI
- 44. Passive resorption of HCO,
- 45. Resorption of water if ADH is presnt take place
- 46. In the collecting duct.
- 47. Resorption of water if ADH is present take place.
- 48. Secretion of K' H'. NII, creatinine some drugs/ urea (any 3 one mark each)
- 49 take place in the convoluted tubules/ through the walls of onvoluted tubules
- 50. about 100 180 1 of blood is filtered per day.
- 51, but only 1 21 of urine is formed

Any 47 x 3 = 141 marks correct diagram L.S Kidney = 9 (fully labeled 9, partly labeled 6, unlabeled 3)

Total marks = 150 marks

06. (i) Control of weeds

have to be controlled as they Methods of contral

- 1. Physical / manual/ mechanical
- 2. Chemical
- 3. Biological
- 4. In manual methods weeds are directly uprooted,
- 5 Destroyed by fire.
- 6. Removed by plaughing and
- 7. Flooding

In chemical methods

8. Weedicides and/ herbicies are applied

In biological methads

- 9 Anoter living organisms
- 10. Which teeds on the weed is used.
- 11. Example : insects/ salrenia/ Beetle / fish for aquatic weeds any correct example

Advantages and Disadvantages

- 12. Manual methods are time consuming
- 13. Crop damage is low
- 14. Weeds are removed completely for a long time
- 15. Fire may affect soil structure/ soil orgamisms.

Chemical methods.

- 16. Very effective
- 17. Affects physiological functions of weeds.
- 18. Pollution of environment
- 19. May affect soil organisms.

Biological Methods

- 20. Very effective / specitic.
- 21. Low Pollution of environment.

Any $20 \times 2 \frac{1}{2} = 50 \text{ marks}$

- (ii) Human cerebellum
 - Derived from the hind brain.
 - Situated behind the pons varoli/ below the posterior portion the cerebrum.
 - 3. Has two hemispheres
 - 4. Grey matter forms the surface of the cerebellum.
 - 5. White matter lies in deeply areas.
 - Concerned with voluntary muscular movement/ skeletal muscle movement
 - 7. Involved in maintenance of posture and
 - 8. Balance

 $8 \times 5 = 40 \text{ marks}$

- (iii) Role of Microorganisms in the extrection of metals.
 - 1. Metabolic activities of
 - 2. Autotrophic bacteria such as
 - 3. Thiobacillus ferroxidans/ Thiobacillus thioxidans.
 - 4. Is used for the extraction of metals / Cu/ uranium
 - 5. From low grade ore
 - 6. They produce sulfuric acid and
 - 7. Fe⁺³ (during metabolism)
 - 8. Causes oxidation of
 - 9. Iron/sulfide containing ore/CuFeS2/chalcopyrites.
 - 10. Producing cuso,
 - 11. Bacteria obtains energy through this process.
 - 12. Cuso, is electrolyzed to obtain Cu

12 x 5 = 60 marks Total = 150 marks

...