M.C.Q. Answers

			-				
(1)	.2	(16)	4	(31)	4	(46) .	5
(2)	4	(17)	4	(32)	1	(47)	5
(3)	2	(18)	3	(33)	5	(48)	2
(4)	4	(19)	1.	(34)	4	(49)	.1
(5)	2	(20)	5	(35)	3 ·	(50)	2
(6)	3	(21)	2	(36)	2	(51)	3
(7)	4	(22)	3	(37)	2	(52)	3
(8)	1	(23)	5	(38)	2	(53)	5
	5	(24)	2	(39)	5	(54)	1
(10)		(25)	3	(40)	3.	(55)	4
(11)		(26)	3	(41)	4	(56)	5
(12)		(27)	2	(42)	3	(57)	3
(13)		(28)	4	(43)	4	(58)	4
(14)	1	(29)	4	(44)	2 .	(59)	2
(15)	1	(30)	4	(45)	4		2
				(10)	T , .,	(60)	1

PARTA-STRUCTURED ESSAY

Each question carries a maximum of 100 marks out of 1000.

- (01) (a) (i) N,P
- (ii) H
- (iii) N, Cl, Cr
- (iv)Zn

- (v) O
- (vi) O, S, P (vii) Cl, S
- $(2 \times 13 = 26)$.
- (b) (i) X = Li, Na (5 x 2) Y = Al, Be (5 x 2) $Z = H_2$ (5)
 - (ii) White precipitate redissolves in excess

GC.E. (A/L) Examination Chemistry - 2004

		M.C.Q.	Answ	ers		
(I) 2 (C) 4	(16)	4	(31)	4	(46)	5
-	(17)	4	(32)	1	(47)	5
	(18)	3	(33)	5	(48)	2
	(19)	1	(34)	4	(49)	1
(5) 2	(20)	5	(35)	3	(50)	2
(6) 3	(21)	2	(36)	2	(51)	3
(7) 4	(22)	3	(37)	2	(52)	3
(8) 1	(23)	5	(38)	2	(53)	5
(9) 5	(24)	2	(39)	5	(54)	1
(10) 1	(25)	3	(40)	3.	(55)	4
(11) 2	(26)	3	(41)	4	(56)	5
(12) 3	(27)	2	(42)	3	(57)	3
:13) 1	(28)	4	(43)	4	(58)	4
(14:1	(29)	4	(44)	2	(59)	2
(15) 1	(30)	4	(45)	4	(60)	1

PARTA - STRUCTURED ESSAY

Each question carries a maximum of 100 marks out of 1000.

(QI) (a) (i) N.P (ii) H (iii) N, Cl, Cr (iv) Zn (v) O (vi) O, S. P (vii) Cl, S
$$(2 \times 13 = 26)$$

(b) (i)
$$X = Li$$
, Na (5 x 2) $Y = Al$, Be (5 x 2) $Z = H_2$ (5)

(9)
$$2O\overline{H} - 2AI + 2H_2O \rightarrow 2AIO_2 + 3H_2$$
 (9) OR $2NaOH + 2AI + 2H_2O \rightarrow 2NaAIO_2 + 3H_2$ OR $2LiOH + 2AI + 2H_2O \rightarrow 2LiAIO_2 + 3H_2$ OR $2OH' + Be \rightarrow BeO_2^2 + H_2$ OR $2NaOH + Be \rightarrow Na_2BeO_2 + H_2$ OR $2LiOH + Be \rightarrow Li_2BeO_2 + H_2$ (44 marks)

(c) L=
$$SO_2$$
 $M = SO_3$ $N = H_2SO_4$ $= 10 \text{ marks}$ (10 marks)

(Total = 100 marks)

(02) (a) (i)
$$4\text{CrO}_3 \rightarrow 2\text{Cr}_2\text{O}_3 + 3\text{O}_2$$
 (10)
Mass of I mol of $\text{CrO}_3 = 100\,\text{g}$ (2)
Mass of I mol of $\text{O}_2 = 32\,\text{g}$
OR Mass of I mol of $\text{Cr}_2\text{O}_3 = 152\,\text{g}$ (2)
Mass of $\text{CrO}_3 = 0.34\,\text{g}$ (6)
Methods of finding the mass of CrO_3 (10)
% mass of CrO_3 in the mixture $= \frac{0.34\,\text{g}}{7.4\,\text{c}} \times 100$ (4)

85 (6)(40 marks)

= 0.34 g

There are several methods of finding the mass of CrO,

(A) When 400g of CrO, decomposes the loss of mass = 96 g Loss of mass = 0.4000 g - 0.3148 g = 0.0816 gMass of CrO, in the sample =

(B) Let mass of CrO, in 0.4000 g of sample be x $\frac{x}{100g \times 2} \times 152g + (0.4000 g - x) = 0.3184 g$ x = 0.34 g

(C) Let the mass of Cr₂O₃ in 0.4000 g of sample be x (0.4000 g-x) x 152 g + x = 0.3184 g 100 g x 2 $\therefore x = 0.06 g$

Thus mass of CrO, in the sample = 0.4000 g - 0.06 g $0.34 \, \mathrm{g}$

(iii)
$$Cr_2O_3 + 10 \text{ OH} \rightarrow 2CrO^2_4 + 5H_2O + 6e$$
 (10)

(b) (i) To measure the time taken (4) (EITHER) to remove a given / same/ constant amount of I, formed during the reaction (OR) for the formation of a given / same/ constant amount of I,. (OR) for the reaction of a given/ same/ constant amount of 17 Fe3+

(ii) To indicate the presence of free I, in the reaction mixture (5) OR to indicate I, formed after all the NaSO, is consumed.

(iii)	Group	The reaction between H+ and S2O2-3 giving S.				
	7. (**)C	therefore the amount of S ₂ O ² , available to react with I ₂ varies OR				
	A	The reaction between Fe3+ and S ₂ O ² ₃ giving S, therefore the concentrations are not what they are expected to be . (8 marks.)				
	В	The reaction starts as soon as Fe ³⁺ and K1 are mixed much before stop watch is started OR the reaction starts before the contents of the beakers are mixed. (8 marks)				
	С	Correct (4)				

(iv) (α) Decrease the concentration / amount of Fe³⁻/K1 (5 mark:

(β) Increase the concentration /amount of S₂O₃²

(5 marks (Y) Decrease the temperature (5 marks

> . (50 marks Total = 100 marks

(iii) $CH_3CH_2CH_2CH_3$ $CH_2 = CH - CH = CH_2$ $CH_3 - C = C - CH_3$ $CH_3 - C = CH - CH_3$ $CH_2 = C = CH - CH_3$

(v) $CH_1CH_2C \equiv CH$

tn; C,H,

(2 x 5 = 10 marks) (6 marks) (b)-16 marks

 $(4 \times 4 = 16 \text{ marks})$

(ii) Mechanism - type	Reaction Electrophile		Nucleophile	
Electrophilic addition .	III	Br*		
Electrophilic substitution	IV	NO. ³		
Nucleophilic addition	ī		СŊ	
Nucleophilic substitution	II		oit	

(iii)
$$CH_3 - CH - CH_2$$
 Br $2 \times 8 = 16 \text{ marks}$
Br (c) 36 marks
(Total = 100 marks)

PART - B (Essay)

Each question carries a maximum of 150 marks out of 1000

(5) (a) In an ideal mixture of gases (or a mixture of gases that do not interact with each other), the total pressure of the mixture is equal to the sum of the partial pressures of the constituent gases (10 marks)

$$d = \frac{m}{v} = \frac{-70 \times 70 + 72 \times 20 + 74 \times 10}{V} = 2.36$$
(5)
(5)

$$\frac{7080}{2.36} = V = 3000 \text{ dm}^3 \qquad (3+2)$$

$$P_{VCl_{2}} = \frac{pRT}{V} = \frac{10 \times 8.314 \times 300}{3000 \times 10^{3}} = 8.314 \times 10^{3} \text{ Pa}$$
(5)
(7)
(P_a = Nm⁻²)
(a = 45 marks)

(5)
$$SF_4(g) \xrightarrow{\Delta H} S(g) + 4F(g)$$

$$\Delta_i^n H_{(sg)} + 4\Delta_i^n H_{(Fg)}$$

$$S_{(S)} + 2F_{2(g)}$$
(5)

∴ -775 +
$$\Delta H$$
 = 279 + 4 x 79 = 279 + 316 = 595 (5)
∴ ΔH = 1370
 ΔH_D (S-F) = $\frac{1370}{4}$
= 342.5 kJ mol⁻¹ (3 · 2)

$$SF_{\alpha}(g) \xrightarrow{\Delta H} S(g) + 6F(g)$$

$$\Delta_{r}^{"H}(SF_{\alpha}g) \xrightarrow{\Delta_{r}^{"H}(s|g) + 6\Delta_{r}^{"H}(F|g)} (5)$$

-1210 +∆II = 279 + 6 x 79
279 + 474 = 753
∴ ∆H = 1963
∴
$$\Delta_{p}$$
fI(S-F) = $\frac{1963}{6}$
= 327.1 kJ mol⁻¹ (5)

5 - f bond in SF, is stronger than that in SF, (5)

(45 marks)

		40y = 10x
Laborrio	(5)	v <u>1</u>
Reaction of steam with coal is endothermic	ction	and, $\frac{y}{x} = \frac{1}{4}$
Therefore, temperature of coal drops as the read proceeds	(5)	4 × 10 4 × 100 × 1000
The rate of a reaction depends on temperature	(5)	$(iii) \times = \frac{4 \times 10^{4} \times 100}{125 \times 100} \times 1000$
The rate of the reaction between steam and coal	(5)	(m).
decreases with time.		= 3.2 x 10 ⁻³ mol.dm ⁻³
As the activation energy of the reaction is high	a reaction	0.8 x 10 ⁻³
temperature of about 400°C is required for the	(5)	y = 0.0 x 10 ⁻¹ mol.dm ⁻³
to occur at a rate sufficient for industry The reaction of O ₂ (in air) with coal is exotherm	nic (5)	.010
Therefore, when air is passed over coal the tem	porum	z = (X - Y)10 = $(3.2 \times 10^{-3} - 0.8 \times 10^{-3})10$
of coal can be increased (to above 400°C).		= (3.2 x 10 ⁻² 0.8 × 10 ⁻⁷
Air is passed alternately with steam in this pro	alue (5)	$= 2.4 \times 10^{-2} \text{mol.dm}^{-3}.$
to keep the temperature at a sufficiently high v	aluc (5)	7
	(60 marks) = 150 marks	$(iv)y = \begin{bmatrix} \frac{x}{4^3} \end{bmatrix} = \begin{bmatrix} \frac{x}{64} \end{bmatrix}$
Total	. 150 1112113	$(iv)y = \begin{bmatrix} 4^3 \end{bmatrix} \begin{bmatrix} 64 \end{bmatrix}$
(06) (a) Solubility Product = $[M^{3*}_{(aq)}]^2[X^{2*}_{(aq)}]^3$		3.2 x 10.1
Note If (aq) is not indicated do not award th	e 10 marks.	$=\frac{3.2 \times 10^{-1}}{64}$
	(10 marks)	$= 0.05 \times 10^{-3}$
(b) $K = \frac{[Ag(NH_1)_2 + (aq)]}{[Ag'(aq)[NH_1(aq)]^2}$	(5)	= 5 x 10 ⁻³ mol.dm ⁻³
$[Ag'(aq)[NH_1(aq)]^2$		$= 5 \times 10^{-3} \times 125 \times 10^{3}$
$1.7 \times 10^7 = \frac{0.12}{[Ag'(aq)] \times (2.0)^2}$	(5)	
$[Ag^{*}(aq)] \times (2.0)^{2}$		= 6.25 ppm
$\therefore [Ag+(aq)] = 1.8 \times 10^{-9} \text{mol.dm}^{-3}$	(5)	(90
		Total = 15(
$1.7 \times 10^7 = \frac{0.06}{[Ag^*(aq)] \times (1.0)^2}$	· (5)	(07) (a) No change when A is immersed in a solution of
	(5)	A ^{m+} (aq) [i.e. A _(n) / A ^{m+} (aq)]
$[Ag+(aq)] = 3.5 \times 10^{-9} \text{ mol dm}^{-3}$	-50,	No change when B is immersed in a solution of
$k_{q(AqCl)} = [Ag^*(aq)][Cl^*(aq)]$	(3)	B^{n} (aq) [i.e. $B_{(n)}/B^{n}$ (aq)]
In the solution.		Out of the two electrodes, A (a) Bn. (aq) and
$[Ag+(aq)][CI(aq)] = 3.5 \times 10^{11} \text{ mol}^2 \text{ dm}^4$	(7)	B (a) / An* (aq) a change/ dissolution of metal
This value is less than 1.8 x 10 ⁻¹⁰ mol ² dm ⁻³	(5)	Occurs only in one.
AgCI will not precipitate	(10)	The metal that dissolves is the more reducing metal
		and the solution contains.
Alternate answer to Question 6 (b)	(50 marks)	The cation of the other metal
$K = \frac{[Ag^*(aq) + [NH,(aq)^2]]}{[Ag[NH,]^*,(aq)]}$	(5)	design design and
[Ag[NH ₁) ² ,(aq)]		(b) (i) (l) $A(g) = P(g) + Q(g)$
Let x be the concentration of Ag+		0.2 - x x x
$1.7 \times 10^7 = \frac{x(2.0)^2}{0.12 - x}$	(5)	Total no. of moles at equilibrium
$2.04 \times 10^{\circ} - 1.7 \times 10^{7} \times 4x$	1,07	$= \frac{1.2 \times 10^{5} \times 8.314 \times 10^{-3}}{8.314 \times 400} = 0.30$
		8.314 x 400 (4)
$\therefore 2.04 \times 10^{6} \cong 1.7 \times 10^{7} \times \dots$		0.2 + x = 0.3 moi
[Ag'(aq)] = 0.06 mol dm'	(5)	x = 0 l mol
$k_{\varphi}(AgCl) = [Ag^{*}(aq)][Cl^{*}(aq)]$	(3)	$P_A = P_P = P_Q = \frac{0.1}{0.3} \times 1.2 \times 10^{-1}$
In the solution,		(2) (3)
$[Ag'(aq)][Cl(aq)] = 6 \times 10^4 \text{ mol}^2 \text{ dm}^4$	(7)	$= 4 \times 10^4 \text{Pa} $ (3)
This value is greater than 1.8 x 10 ⁻¹⁰ mol ² dr		
AgCl will precipitate	(5) (10)	$K_p = \frac{4 \times 10^4 \times 4 \times 10^4}{4 \times 10^4}$
(c) (i)	(50 marks)	= 4 x 10 Pa
(B) aq = 0.15×10^{-2}	· (5 _:	(II) Total no. of moles
4.5×10^{-2}	10.	(II) Total no. of moles at equilibrium
$= \frac{4.5 \times 10^{-2}}{0.15 \times 10^{-2}} = 30$	(5)	$=\frac{1.4 \times 10^{3} \times 8.314 \times 10^{-3}}{9.2314 \times 10^{-3}} = 0.35$
(5)		$\frac{1.4 \times 10^{5} \times 8.314 \times 10^{-3}}{8.314 \times 400} = 0.35$ $0.4 \times x = 0.35$
(ii) $Z = (x-y)10$	(5,	. 0.33 mol
30 = (x-y)10		x = 0.05 mol
<u> </u>		(5) $P_b = P_0 = \frac{0.15}{0.35} \times 1.4 \times 10^{\circ} (2)$
A/L 'Chemistry - Answer' 2004 - April		$(2) 0.35 x 1.4 x 10^{4} . (2)$
Wer Currently - Course wood - April		A-3
.eti		

-			40y = 10x	i i
		(5)		
	Reaction of steam with coal is endothermic		and $\frac{y}{x} = \frac{1}{4}$	1
	Therefore, temperature of coal drops as the read	(5)	100	
	proceeds	(5)	$\frac{4 \times 10^{4} \times 100}{3} \times 1000$	
	The rate of a reaction depends on temperature. The rate of the reaction between steam and coal		$\frac{4 \times 10^4 \times 100}{125 \times 100} \times 1000$	
	decreases with time	(5)	2 2 × 10 ³ mol.dm ³	4
	the state of the reaction is high		$y = 0.8 \times 10^3$ $y = 0.8 \times 10^3$	
	temperature of about 400°C is required for the r	Caronina	$y = 0.8 \times 10^4 \text{ mol.dm}^3$	
	to occur at a rate sufficient for industry		= 8.0 X 10 III	,,
	The market of () (in our with coal is exolution		V VIII	
	Therefore, when air is passed over coal the left	(5)	$= \frac{(x-1)^{1/3}}{(3.2 \times 10^3 - 0.8 \times 10^3)^{1/3}}$	
	of coal can be increased (to above 400°C).		102 -101 dm ¹³	
	Air is passed alternately with steam in this pro- to keep the temperature at a sufficiently high va-	due (5)	= 2.4 x (U mot. cm	11
	to keep the temperature at a softeness,	(60 marks)	רה ה	
		150 marks) _I
			(M) - [4] [4]	
5)	(a) Solubility Product = [M"1]F[X'_m]	شاف المد	$=\frac{3.2\times10^{-1}}{64}$	
	Note If (aq) is not indicated do not award the	10 marks.		
		(10 marks)	$= 0.05 \times 10^3$	
	(b) $K = \frac{[Ag(NH_i) - (aq)]}{[Ag'(aq)]NH_i(aq)]^2}$	(5)		h
			$= 5 \times 10^{3} \times 125 \times 10^{3}$	i
	$1.7 \times 10^7 = \frac{0.12}{[Ag^*(aq)] \times (2.0)^2}$	(5)		
	[Ag*(aq)] x (2 0)*		7.22 FF	
	[Ag+(ag)] = 18 x 10"mol dm"	(5)		
			Total = 150 mark	3
	$1.7 \times 10^{\circ} = \frac{0.06}{[Ag'(aq)] \times (1.0)^2}$. (5)	(07) (a) No change when A is immersed in a solution of	
		751		
	[Ag=(aq)] * 35 x 10" mol dm"	(5)		"
	- [Ag(aq)][Cl(aq)]	(3)	No change when B is immersed in a solution of	
			$B^{n}(aq) [i.e. B_{ce}/B^{n}(aq)] $ (10)	1)
	In the solution.		Out of the two electrodes A (a) / B** (aq) and	
	[Ag-(aq)][Cl(aq)] = 35 x 10" mol dm	(7)	CG L	
	This value is less than 1.8 x 10° mol dm3	(5)	Occurs only in one. (20	h
	AgCI will not precipitate	(10)	The installation about the collection of the col	
			and the solution contains (10)	11
	Attaches to Court on 6 (b)	(50 marks)	The cation of the other metal	Ŀ
	Alternate answer to Question 6 (b)		of marks	
	k = {\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(5)	2	
	[Ag[NH,)*,(aq)]	107	(b) (i) (l) $A(g) = P(g) + Q(g)$	
	Let x be the concentration of Ag-		0.2 - x x x	
	$1.7 \times 10^{10} - \frac{\times (2.0)^2}{(12 - 3)^2}$		Total no. of moles at equilibrium	
		(5)	1.2 x 10° x 8.314 x 10°3	
	2 04 x 10" - 17 x 10" x = 4x		$= \frac{1.2 \times 10^{3} \times 8.314 \times 10^{-3}}{8.314 \times 400} = 0.30$	
	204 x 10 = 17 x 10 x		$0.2 + \lambda = 0.3 \text{ mol}$	
	[Ag'(aq)] = 0.66 mol dm"	15)	x = 0 1 mol	
	(AgCl - [Ag (aq)] Cl (aq)		P = 0 = 0 1	
	in the solution.	. 3)	" F 0 0 1.2 X IV	
			(3)	
	[Agraqi][Clraqi] = 6 x 16 mol dm*	(7)	= 4 x 10 Pu	1
	This value is greater than 1.8 x 10 mol2 dm ⁻²	(5)	$K_{p} = \frac{4 \times 10^{4} \times 4 \times 10^{4}}{4 \times 10^{4}}$	į
	AgCl will precipitate	(10)	4 x 10 ³	
		(50 marks)	* 4 x 10 ⁴ Pa	ı
(0)	1.,	K.S.)		
-	(B) eq. • 0.15 x 10 ²	()	(Sub Total no. of moles at equilibrium	
	45 x 10 ²		1 4 × to	
	$k = \frac{4.5 \times 10^{2}}{0.15 \times 10^{2}} = 30$	15;	* 10° x 8.314 x 10° ≈ 0.35 12°	
	2000 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		$= \frac{1.4 \times 10^{9} \times 8.314 \times 10^{3}}{8.314 \times 400} \approx 0.35 (2)$ $0.4 + x = 0.35 \text{ mat}$	
1	m Z = (x - y)10	(5,		1
	30 = (x-y) 10		x = 0.05 mol	,
	3		$P_{\nu} = P = 0.15$	
	13001		$\frac{P_{h} = P_{0} = \frac{0.15}{0.35} \times 1.4 \times 10^{4} (2)$	
'Ch	emistry - Answer' 2004 - April		(2)	

```
= 0.6 x 10<sup>5</sup>
                        = 6 x 10' Pa
                      P. = 2 x 10 Pa
                                                                   (2)
                             2 x 104
                        6 x 10 4 x 6 x 10 1
                                                                  (3)
                       0.055 x 10<sup>-4</sup>
                                                                 (04)
                       5.5 x 106 Parl
                                                    (Sub Total = 30)
            Total pressure inside Z = (12 + 14) x 104
    (III)
                                          = 2.6 x 103 Pa
                     6 x 10<sup>4</sup>
4 x 10<sup>4</sup>
                        (2)
(ii) For the reaction,
                A(g) = P(g) + Q(g)

A_c^0H = 40 + 30 - 50 = 20 \text{ kJ mol}^3
                                                                   (3)
         .. The reaction is endothermic
                                                                   (2)
        For the reaction, B(g) + D(g) = R(g)
            \Delta_r^{0}H = 60 - 35 - 45 = -20 \text{ kJmol}^{-1}
                                                                   (3)
         .. The reaction is exothermic
                                                                   (2)
         When the temperature is increased A,P,Q equilibrium
         shifts to right.
         .. P decreases.
         When the temperature is increased B,D,R equilibrium
         shifts to left.
                                                                    (3)
                                                                    (3)
         .. P increases.
        Therefore, \frac{P_n}{P_A} ratio increases.
                                                                    (3)
                                            Sub total= 25 (+ 5Bonus)
                                            Total = 150 marks
                          PART - C (Essay)
Each question carries a maximum of 150 marks out of 1000
(08) (a) (i) CO/ CObalt
                                                                    (5)
         (ii) 1S2 2S2 2P6 3S2 3P64S2 3d7
         OR 1S2 2S2 2P63S2 3P6 3d7 4S2
                                                                    (5)
         (iii) pink [CO(H<sub>2</sub>O)<sub>8</sub>]<sup>2+</sup> (5)
                                          Octahedral
                                                                    (2)
                                           tetrahedral
                                                                    (2)
             blue [COCl<sub>4</sub>]<sup>2</sup>· (5)
         (iv) Covalent and Co-ordinate
                                                                     (3)
         (v) The concentration of CI ions is not sufficient
                                                                     (3)
             to form the blue complex.
                                                                     (5)
         (vi) It turns pink
         (vii)Medical use : 60 CO therapy/ γ - radiation
                                                                     (5)
              (cancer) therapy/vitamin
          Industrial use: Alloys/ magnets / humidity indicators
                                                                     (5)
                           Coloured glasses, pigments
                                                              (50 marks)
 (b) (i) Contact process / production of H2SO4
         Conversion of SO, to SO,
          Catalyst: V,O,
          Ostwald process/production of HNO,/
          Reaction of NH, + O, (air)
                                                                      (3)
          Catalyst: pt
          Haber process/ production of NII,/
                                                                      (4)
          Reaction of II, + N,
Catalyst : Fe OR iron oxides
                                                                      (3)
          Hydrogenation of unsaturated hydrocarbons /
                                                                      (4)
(4)
(3)
          Production of margarine
          petroleum refinery / industry
          Catalysts pt OR Rh
      Any Three of the above
```

Sadeepa Publishers

A-4

			_
	$= 0.6 \times 10^{\circ}$		(i) $2SO_1 + O_2 \rightarrow 2SO_3$ (5)
	= $6 \times 10^4 \text{ Pa}$ P _n = $2 \times 10^4 \text{ Pa}$	(4)	$4NH_1 + 5O_2 \rightarrow 4NO + 6H_2O$ (5) $N_1 + 3H_2 \rightarrow 2NH_2$ (5)
		(2)	$N_1 + 3H_1 \rightarrow 2NH_1$ $2H_1 + CO(g) \rightarrow CH_1OH(I)$ any three 5 x 3 = (5)
	$\therefore K_{p} = \frac{2 \times 10^{4}}{6 \times 10^{4} \times 6 \times 10^{4}}$	(3)	
	= 0.055 x 10 ⁻⁴	_	(iii) By reducing the activation energy of the reaction, heating/
	= 5.5 x 10 ⁴ Pa ⁻¹	(04)	energy costs can be reduced.
		Total = 30)	By increasing the rate of the reaction the time taken for the process is reduced and thereby the production costs are
	T-1-1	4 (0)	reduced.
(111	= 2.6 x 10 ⁵ Pa	(2) (4)	Any TWO of the above (2 x 6)
	P. 6x104 _ 1.5	(4)	God Consideration and advantage on to metal surface where
(IV)	$\frac{P_{B}}{P_{A}} = \frac{6 \times 10^{4}}{4 \times 10^{4}} = 1.5$ (2)		(iv) Gas molecules are adsorbed on to metal surface where they react. (3)
	(2)		This provides a new pathway with lower activation
(ii) Fo	the reaction,		energy. (3)
	A(g) = P(g) + Q(g)		Variable valency of transition metals also helps in
	$\Delta_{i}^{e}H = 40 + 30 - 50 = 20 \text{ kJ mol}^{-1}$	(3)	electron transfer (oxidation - reduction) reactions. (6)
	:. The reaction is endothermic	(2)	(60 marks)
	For the reaction, $B(g) + D(g) = R(g)$		(c) (i) (NII ₄) ₂ CO ₃ , (NII ₄) ₂ SO ₄ & Ba(OII) ₂ solutions mixed in pairs.
	$\Delta_{i}^{o}H = 60 - 35 - 45 = -20 \text{ kJmol}^{-1}$	(3)	Ba (OH) ₂
	The reaction is exothermic	(2)	The solutions which do not form a precipitate (OR which
	When the temperature is increased A,P,Q equili		do not evolve NH ₃) on mixing are (NH ₄) ₂ CO ₃ and (NH ₄) ₂ SO ₄ (5)
	shifts to right.	(3)	The other solution is Ba(OH), (5)
	P decreases.	(3)	The solution that gives a precipitate with Ba(OH), which
	When the temperature is increased B,D,R equili	brium	is insoluble in dil HNO, is (NH.), SO. (5)
	shifts to left.	(3)	The solution that gives a precipitate with Ba(OH), which
	∴ P _B increases.	(3)	is soluble in dil HNO ₃ is (NH ₂) ₂ CO ₃ . (5)
	Therefore, $\frac{P_B}{D}$ ratio increases.	(3)	(ii) Zn(CH ₃ COO), Ba(OH), & Na ₂ CO ₃ solutions : adding
	Sub total= 25	(+ 5Bonus)	each solution drop - wise to others.
	Total = 150 m	arks	When adding a solution to the others, if a persistent is
$\overline{}$	PART - C (Essay)	-	formed in one case and a precipitate is formed and then dissolves in excess in the other case, then the added
Each o	uestion carries a maximum of 150 marks out of 1	000	solution is Ba(OH),. (10)
	(i) CO/CObalt		Then the solution where a persistent precipitate is formed
(00) (2)	(ii) 1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ² 3d ⁷	(5)	is Na ₂ CO ₃ , and the solution where the precipitate dissolves
		4.00	in excess is Zn(CH ₃ COO) ₂ (5) OR
	OR 15 ² 25 ² 2P ⁶ 35 ² 3P ⁶ 3d ⁷ 4S ²	(5)	When adding a solution, if a persistent precipitate is
	(iii)pink [CO(H ₂ O) ₆] ²⁺ (5) Octahedral	(2)	formed immediately with the other two solutions, then
	blue [COCl ₄] ² (5) tetrahedral	(2)	the added solution is Na ₂ CO ₃ (10)
	(iv) Covalent and Co-ordinate	(3)	Of the remaining two, the one that gives a persistent
	(v) The concentration of CI ions is not sufficie to form the blue complex.	nt . (3)	precipitate immediately when added to the other is Ba(OH),. (5)
	(vi) It turns pink	(5)	The other solution is then identified as Zn(CH ₂ COO), (5)
	(vii)Medical use : 60 CO therapy/ γ - radiation		
	(cancer) therapy/vitamin	(5)	09) (i) Limestone is heated (5) to give CaO (5)
	Industrial use: Alloys/ magnets / humidity ind		OR CaCO ₃ \rightarrow CaO + CO ₂ (10) If heat not indicated give only 5 marks. CO ₃ need not be
	Coloured glasses, pigments	(5) (50 marks)	indicated.
(b) (i)	Contact process / production of H,SO,	(50 marks)	CaO is then reacted with coke / carbon (3) in a
. , ,	Conversion of SO ₂ to SO ₃	(4)	graphaite/ electric arc furnace (5) to give CaC ₁ (2)
	Catalyst: V ₂ O ₃	(3)	OR CaO + 3C \rightarrow CaC ₂ + CO (5) CaC ₂ is reacted with water to produce acetylene, C,H,
	Ostwald process/production of HNO,/	440	OR $CaC_1 + 2 H_2O \rightarrow C_2H_1 + Ca(OH)$, (10)
	Reaction of NH ₃ + O ₂ (air) Catalyst: pt	(4)	Ca(OH), need not be indicated. (40 marks)
	Haber process/ production of NH ₁ /	(5)	Total = 150 marks)
	Reaction of H, + N,	(4)	 (ii) Cheap electricity, water, transport/ roads, storage facilities
	Catalyst : Fe OR iron oxides	(3)	for C ₁ H ₁ , Labour, availability of limestone, availability of coke, effect on the environment.
	Hydrogenation of unsaturated hydrocarbons /	(4)	Any five points $5 \times 3 = 15$
	Production of margarine petroleum refinery / industry	(4)	
	Catalysts pt OR Rh	(3)	(iii) Yes, Reasons: Cheap labour, avilability of limestone etc No: Reasons: Expensive electricity, poor road conditions
An			No: Reasons: Expensive electricity, poor road conditions etc., (5)

(iv) Reaction of acetylene with HCl gas to produce vinyl (10)CH = CII + HCI → CH, - CHCI

Polymerisation of vinyl chloride to give PVC.
OR
$$nCH_2 = CHCI \rightarrow -(CH_2 - CHCI)_{\frac{1}{n}}$$
 (6)

(v) Release of CO, Release of CO, Release of HCl, etc., pollution due to dust, pollution due to heat, problems due to mining of limestone etc.,

any three points $(3 \times 3 = 9)$

(b) (i) Phenolphthalein is pink/red in basic medium; Colourless in acid medium.

Its PH interval is in the basic range (8-10)

MO is orange in basic medium and red in acid medium

Its PH interval is in the acidic range (3-5)

A solution of Na,CO, is (strongly) basic.

Therefore, a mixture of these two indicators will show a reddish - orange colour.

On titration with HCl, Na₂CO, will be first converted to

Phenolphthalein changes colour at this stage (Red to colourless).

Therefore the solution shows the orange colur of MO. On further titration, NaHCO3 is converted to CO2 and H2O. At this stage MO changes colour from orange to red.

$$(2 \times 12 + 1 \text{ for } \le 14)$$

 $(9) \text{ b } (i) = 25 \text{ Marks}$

(ii)
$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O \stackrel{CO_2}{\rightarrow} 2NaHCO_3$$

 $Na_2CO_3 + H_2O + CO_2 \rightarrow 2NaHCO_3$

$$NaHCO_3 + HCI \rightarrow NaCI + CO_2 + H_2O$$
 (3 x 5)

The conc. of Na,CO, solution = 0.08 mol dm⁻³

The amount of NaHCO, formed in ______ 0.08 x 25 x 2 mol 25.0 cm3 of solution when CO2 (3) was passed

 0.004 mol (5) .

0.5 x 28.0 mol Total amount of NaHCO, reacted = (2) with HCl 0.014 mol (5)

The amount of NaHCO, formed 0.014 - 0.004 mol from NaOH 0.01 mol (5)

Therefore the amount of NaOH in 25 cm3 of the original solution 0.01 mol (5)

The concentration of NaOII in = 0.01x1000 mol.dm-3 colu ion 0.40 mol.dm⁻³

(10) (a) (i) Iron pyrites/FeS₂, S deposits, petrolium, ZnS, Cus (any 2 x 05 = CuFeS,, PbS

> (ii) Forward reaction is favoured by low temperature (III Reaction occurs with reduction in the number of mole (5). Therefore it is favoured by high pressure (5).

(iii) The temperature used is about 450°C. (5) Although, according to the Le Chatelier's principle, low temperature is suitable, the rate of the reactions too low to be economical (10) High pressure will require more expensive equipmen (10) and also will corrode the equipment by reacting with SO, and SO, (10) Therefore, a pressure of 1-3 atm is used. (5)

(iv) Combustion engine Environment emission of SO,/SO, Corrosion (5) S (5) Emission of pb to the pb deposit on Lead environment engine parts (5)

(90 marks) (b) $SO_4^{2-} + H_2O \rightarrow SO_4^{2-} + 2H^+ + 2e$ $1 + 2e \rightarrow 2\Gamma$ $2S_2O_3^2 \rightarrow S_4O_4^2 + 2e$

14

The total amount of
$$I_2$$
 in 25 cm³ of 0.1 M I_2 solution = $\frac{25 \times 0.1}{1000} = 0.0025$ mel

The amount of Na₂S₂O₃ 0.1 x 30 mol reacted with I, remaining after = reaction with SO,2

= 0.1 x 30 mol .. Amount of I, reacted with Na,S,O,

.. Amount of I, reacted = (0.0025 - 0.0015) mel with SO2-, 0.001 mol

0.001 x 1000 .. The concentration of SO2 in the solution = 0.1 moldm⁻³

 $SO_4^{2+} Ba^{2+} \rightarrow BaSO_4$.

Relative formula mass of SO², = 96

Relative formula mass of BaSO₄ = 233

The mass of BaSO₄ obtained = 0.932 g

96 x 0.932 .. The mass of SO2. = 0.384 g

.. The amount of SO2, in 0.384 10 cm3 of solution = 0.004 mol

0.004 - 0.001 mol .. The original amount of SO2-0.003 mol

:. The concentration of SO2-4 0.003 x 1000 Reaction of acetylene with HCI gas to produce viry! (10) chiloride CH = CH+HCl → CH,-CHCl

Polymerisation of vinyl chloride to give PVC. (6) OR nCH, = CHCl →-(CH, CHCl);

Release of CO, Release of CO, Release of HCL etc., pollution due to dust, pollution due to heat, problems fue to mining of limestone etc.,

any three points (3 x 3 = 9)

"henolphthalein is pink/red in basic medium;

olouriess in acid medium

ts PH interval is in the basic range (8-10)

«1O is crange in basic medium and red in acid medium

ts PH interval is in the acidic range (3-5)

A solution of Na₂CO, is (strongly) basic.

herefore, a mixture of these two indicators will show it eddish - orange colout.

In titration with HCl, Na,CO, will be first converted to JaHCO.,

thenolphthalein changes colour at this stage (Red to olourless k

herefore the solution shows the orange colur of MO. In further nitration, NaHCO, is converted to CO, and $H_{\rm p}$ O. it this stage MO changes colour from orange to red.

(2 x 12+1 for ≤ 14) (9) b (i) - 25 Marks

he conc. of Na₂CO₃ solution = 0.08 mol dm⁴

te amount of NaHCO, formed in_	0.08 x 25 x	2 mol
i.0 cm2 of solution when CO,	1000	
as passed		(3)

0.004 mol (5)

0.014 mol (5)

is amount of NaHCO, formed

0.014 - 0.004 mol um NaOH 0.01 mol (5)

erefore the amount of NaOH in

= 0.01 mol cm3 of the original solution (5)

e concentration of NaOH in

(5)

(9) b (ii) - 50 Marks

00 (a) (i) from Parties/FeS₂ S deposits, petrolium, ZnS, Cus. famy 2 x 05 ... h. Cufts, PhS

(ii) Forward reaction is favoured by low temperature the Forward reasons with reduction in the number of make Reastion occurs with reduction in the number of make the favoured by high pressure as (5). Therefore it is favoured by high pressure (5)

Lmp4

. 7

3.

5. .

a fin

12

 j^{2j}

į de

(4)

.

(iii) The temperature used is about 450°C. (5) The semperation to the Le Chatelier's principle, a Although, active is suitable, the rate of the reaction is too low to be economical (10) 100 am to a require more expensive equipment in the pressure will require more expensive equipment. (10) and also will corrode the equipment by reacting with SO, and SO, (10) Therefore, a pressure of 1-3 atm is used (5)

iv)	Combustion engine	Environment
s	Corrosion (9)	emission of SO/SO,
Load	pb deposit on engine purts (5)	Emission of pb to the environment (5)
		000 -

(90 marks) 50° + H,O → SO, + 2H++2c 445

$$\begin{array}{ccc} 1 + 2e \rightarrow 2f & (4) \\ 2S_1O_1^F \rightarrow & S_1O_1^F + 2e & (4) \end{array}$$

The total amount of I, in 25 x 0.1 = 0.0025 mol , t. 25 cm³ of 0.1 M I, solution

The amount of Na,S,O, $0.1 \times 30 \text{ mol}$ reacted with I, remaining after = 1000 reaction with SO, 1

$$\therefore \text{ Amount of I, reacted}$$
with Na,S,O,
$$= \frac{0.1 \times 30 \text{ mol}}{1000 \times 2} = 0.0015 \text{ mol}$$
(4)

The concentration of SO₂ =
$$\frac{0.001 \times 1000}{10}$$

in the solution = 0.1 moldm³

The mass of SO⁴,
$$=\frac{96 \times 0.932}{233}$$

 $=0.384 \text{ g}$

The concentration of SO² =
$$\frac{0.003 \times 1000}{10}$$

0.3 mol dm⁻¹

_ is tisched

6.