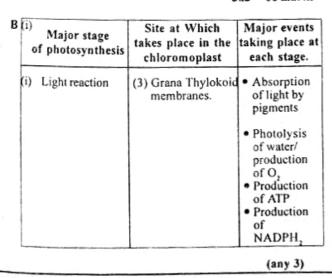
General Certificate of Education (A/L) Examination 2005 - April Biology 1 - II Answers

2005 April - MCQ Answers


1 - 5	16 - 2	31 - 3	46 - 4
2 - 2	17 - 3	32 - 3	47 - 3
3 - 2	18 - 4	33 - 4	48 - 2
4 - 3	19 - 2	34 - 3	49 - 4
5 - 2	20 - 2	35 - 2	50 - 2
6 - 1	21 - 3	36 - 2	51 - 4
7 - 2	22 - 4	37 - 2,3	52 - 4
8 - 4	23 - 4	38 - 5	53 - 1
9-4	24 - 3	39 - 4	54 - 5
10 - 3	25 - all	40 - 5	55 - 4
11 - 4,5	26 - 3	41 - 5	56 - 1
12 - 2	27 - 3	42 - 4	57 - 5
13 - 5	28 - 2	43 - 2	58 - 2
14-4	29 - 4	44 - 2	59 - 3
15 - 1	30 - 4	45 - 2	60 - 4

Part A-Structured Essay

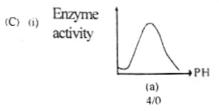
- A (i) 1. Light absorbed by the photosynthetic pigments
 - 2. In the Blue (430 500nm) and Red (650 700nm) regions of the Sepctrum
 - 3. Is used in photosynthetic

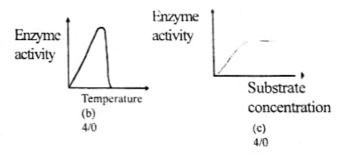
- 1. Rate of photosynthesis is highest in the Blue (430 -500nm) and Red (650 - 700nm) regions of the spectrum.
- Photosynthetic pigments absorb light in the same regions of the spectrum.
- 3. Therefore light absorbed by the pigments is used in photosynthesis

3x2 = 06 marks

- Dark (4) Stroma reaction
- Carboxylation
 - · Reduction of PGA/ Formation of PGAI
 - · Regeneration of CO, acceptor
 - · Synthesis of carbohydrates

10x 02 = 20 marks


(ii) Phisiological Orientation of leaves towards light/ Phototropism Opening of stomata in response to light Movement of chloroplasts in . Pallisade cell layer arranged Pallisade cells towards light


(any two)

- Anatomical Large surface area of leaf leaves are thin and flat
- · Fransparent epidermis and culicle
- length wise.
- · Pallisade layer packed with chloroplast Spongy parenchyma containing intercellular spaces.
- System of extensive vascular tissues.

(any two)

 $4 \times 02 = 08 \text{ marks}$

(ii) Denaturation of enzymes due to Loss of / breakdown of three dimensional structure of protein/ enzyme molecule

 $2 \times 2 = 04 \text{ marks}$

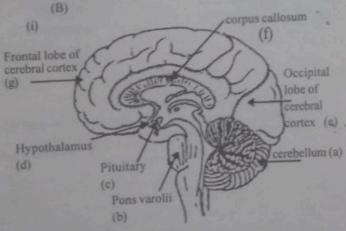
Carbohydrates	C. H. O	Storage
Carbonydrates	C II. O	Structural
		Energy Source
		(Any)
Lipids	C.H.O	Structural
		Storage
		Energy Source
		(Any)
Proteins	C.H.O.N,S	Storage/energy source
		Structural
		Enzymes
		Hormones

Nucleic Acid

Antibodies (Any 2) Contractile Transfer of genefic information/ storage of protrin synthesis (Any2) 16 x 2 = 32 marks

(ii) 1. Add dilute iodine to samples of each (A,B,C)

C.H.O.N.P


- 2. One which does not give blue colour is amylase
- 3. Add equal amounts of the other two solutions to equal amounts of the enzyme (amylase)
- 4. mix well
- 5. take a drop of the mixture at
- intervals of 2 minutes
- test with iodine
- 8. on the white tile
- 9. Observe and note the time taken to complete the reaction
- 10. more time will be taken for 0.5% starch solution than for 0.1 starch solution.

 $10 \times 2 = 20$ marks Total 102 marks Max - 100 marks

(A)

- (i) Co ordination
- (ii) Reflex arc
- (iii) Cnidaria/Coelenterata/Echinodermata
- (iv) deleted
- (v) (a) increases
 - (b) decreases
 - (c) increases
 - (d) increases/ dialates

 $7 \times 3 = 21$ marks

- (ii) (a) (associated with) vision
 - (b) regulates respiration
 - (c) Co ordination of skeletal muscles / Co ordination of valuntary muscular movements
- (iii) Chemicals that are responsible in transmitting messages across the synapse
- (iv) (a) acetylcholoine
- (b) noradrinalin
- (v) Not released into blood/ transported through blood/ not secreted by an endocrine gland.

 $7 \times 3 = 21$ marks

- (i) Reversal of polarity

- (iii) Moving action potential / electrically transmitted message
- (iv) insulation/increase speed of conduction
- (v) Schwann cell

5 x 3 = 15 marks

- (i) (a) phototropism
 - (b) thigmonasty
 - (c) nictinasty
 - (d) phototaxis
 - (e) thigmotrorpism
- (ii) (a) Auxin/IAA

 - (c) Cytokinin

 $9 \times 9 = 27 \text{ marks}$ Total 103.5 marks Maximus 100 marks

- 03. (A)
 - (i) (a) cellular organization/ prokaryotic and eukaroiotic
 - (b) arrangement of cells / unicellular or multicellular and differentiated in to true tissue
 - (c) type of nutrition

3 x 2 = 06 marks

(ii) Platyhelminthes

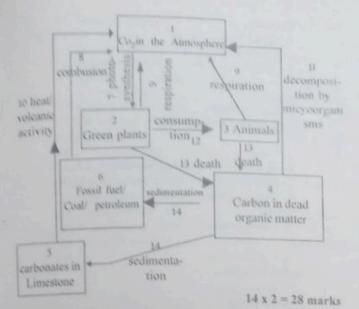
 $1 \times 2 = 02 \text{ marks}$

- (iii) (a) Cnidaria/ coelenterata
 - (b) Deleted
 - (c) Echinodermata
 - (d) chordata
 - (e) enidaria/ coelenterata
 - (f) Mollusca
 - (g) Zygomycota/ zygomycetes
 - (h) Bryophyta
 - (i) Cycadophyta
 - (i) Anthophyta

9+1=10 marks

(i) . A functional unit/ a system in the environment where abiotic/ nonliving components and biolis components/living organisms interact.

 $2 \times 2 = 04 \text{ marks}$


- (ii) (1) Producers
 - (2) consumers
 - (3) decomposers

 $3 \times 2 = 06 \text{ marks}$

- (iii) . Knee roots
 - · Pneumatophores
 - Viviparous germination

(Any two) $2 \times 2 = 04 \text{ marks}$

(iv) · Carbon cycle

(C) (i) Troposphere, stratosphere, mesosphere, thermosphere (If all 4 are given in sequence 2 points, if 3 are given in sequence 1 point)

 $2 \times 2 = 04$ marks

(ii) CFC

 $1 \times 2 = 02 \text{ marks}$

(iii) (1) Ocean - oil (spills)

- (2) Air Vehicular emissions/ industrial emissions/ burning of fossil fuel
- (3) soil Solid waste/ agrochemicals

 $3 \times 2 = 06 \text{ marks}$

(iv) Eutrophication

 $1 \times 2 = 02 \text{ marks}$

- * Increase in cyanobacteria/ alagal bloom
 - · Depletion of oxygen
 - · Death of biota/ (fish)
 - · Decomposition of biota
 - Production of noxious gasses (H,S)
 - · Production of toxins
 - * increase in BOD

(any six)

6 x 2 = 12 marks

- (t) * Requirements of man was low/
 - No accumulation of waste (as they move from place to place in small groups)
 - * Human population was small.

(any two)

 $2 \times 2 = 04 \text{ marks}$

(ii) Industrial revolution/industrialization

 $1 \times 2 = 02 \text{ marks}$

(iii) Existence of biochemical cycles/ Cycling of matter between biotic and abiotic

1 x 2 = 02 marks

(iv) National Environment Act central Environmental Authority 2 x 2 = 04 marks

(v) Control of trans boundary movement of hazardous

1 x 2 = 02 marks

(Total 45 x 2 + 10 = 100 marks)

04. (A)

		Pogonatum	Neprolepis	Selaginella
(a)	Heterospory	absent	absent	Present
(p)	Dispersal of spores by wind	deleted		
(c)	Photosynthetic gametophyte	Present	Present	Present
(d)	Bisexual gameto phyte	absent	Present	absent

9 x 2 1/2 = 22 1/2 marks

- (ii) (a) Presence of morphologically similar different strains (+ and -) which takes part in sexual reproduction
 - (b) A thick walled spore resulting from the fusion of isogametangia
 - (c) Deleted
 - (d) A fruit body formed after sexual reproduction of ascomycetes

3 x 2 1/2 = 7 1/2 marks

- (B) Part in Angiosperms
- (i) (a) Stamen
 - (b) Carpel
 - (c) Pollen sac
 - (d) Flower
 - (e) Embryo sac

5 x 21/2 = 12 1/2 marks

- (ii) (a) Pogonatum
 - (b) Pogonatum/ selaginella
 - (c) Agaricus
 - (d) Nephrolepisl Cycas

4 x 2 1/2 = 10 marks

- Floral Part
- (a) Egg cell
 - (b) Secondary endosper nucleus

 - (d) Hilum / site of attachment of funiculus
 - (e) Overy wall

 $5 \times 2 \frac{1}{2} = 12 \frac{1}{2} \text{ marks}$

(ii) cycas female gametophyte Angiosperm female gametophyte

(a) Archegonia present

(c) Many cells

(d) Archegonial chamber

(f) Many egg cells

Arehegonia absent

only seven cells/8 nuclei Archegonial chamber

One egg cell

(Any four pairs) 4 x 2 1/2 = 10 marks

Process by which the continuity of a species is ensured Production of new organisms of the same species

 $1 \times 2 \frac{1}{2} = 2 \frac{1}{2} \text{ marks}$

- Allow mixing of heritable characters/ allow combination of $1 \times 2 \frac{1}{2} = 2 \frac{1}{2} \text{ marks}$
- (iii) To overcome desiceation of gametes/reproductive cells. $1 \times 2 \frac{1}{2} = 2 \frac{1}{2} \text{ marks}$

(iv) Distall upper part of the fallopian tube

1 x 2 1/2 = 2 1/2 marks

(v) Acrosome reaction/ release of enzymes

1 x 2 1/2 = 2 1/2 marks

(vi) Chorion, allentois (2 points)

2 x 2 1/2 = 05 marks

(vii) HCG

Oestrogen Progesterone

Somastomammotrophin/ HCS

Human placental lactogenic hormone/HPLH

(Any three)

3 x 2 1/2 = 7 1/2 marks (Total 40 x 2 1/2 = 100 marks)

Part B - Essay

- 1. (a) Water moves from soil xylam through three partways
 - 1. "Apoplast" (is the interconnected web) consists of
 - 2. Spaces within cell walls
 - 3. Intercellular spaces
 - 4. Filiferous Layer and cortical cells of root
 - 5. Weter moves freely by "diffusion" and
 - 6. By mass flow
 - 7. "Simplast" consists of (is the web of)
 - 8. Protoplast of cells
 - 9. Interconnected through plasmodesmata of cell walls
 - 10. Water movement is by "diffusion"
 - 11. After water has enterd the cell throug "plasma mambrane" of root hair cells by
 - 12. "Osmosis"
 - 13. "Vacuolar pathway"
 - 14. Movement of water from vacuole to vacuole
 - 15. Water passes through "tono plast"
 - 16. Cytoplasm and
 - 17. Plasmalemma by
 - 18. "Osmosis"
 - 19. Water then passes through endodermis
 - 20. Casparian strips block apoplast movement
 - 21. Allowing water to enter pericycle
 - 22. Through simplast,
 - 23. Vacuolar pathway in to the xylem
 - 24. Water potential of root hair cell is less then that of soil water due to
 - Dissolved substances in root hair cells
 - 26. Soil solution has a higher water potential than root hair
 - Therefore water moves from soil to root hair cells
 - 28. Along water potential gradent
 - 29. Water movement from soil sulution into xylem takes place along a water potential gradient

(b)

- 1. Transpiration pull/ transpiration from leaves
- 2. Reduce water potential of mesophyll cells
- 3. Creating a water potential gradient between xylem and mesophyll cells
- 4. As a result water moves from xylem to mesophyll cells
- 5. Cohesion and
- Adhesion of water molecules
- 7. Maintain a continuous column of water in the xylem/ prevents breaking of water columns
- 8. A continous gradient of water potential exists from soil to mesophyll cells through cortical cells of root.
- 9. Which results in pulling / morement of water into leaf mesophyll cell

29 + 9 = 38x4 = 152 marks(Max = 150 marks)

- Location . (02)(a)
 - 1. In the thoracic cavity
 - 2. Between lungs
 - 3. More towards the left of bodies mid law

Gross structure :

- 4. Cone shaped
- 5. Enclosed in a pericardium

Wall -

- 6. Outer
- 7. Epicardium/ visceral pericardium
- 8. Middle
- 9. Myocadium
- 10. Inner
- 11. Endocardium

Epicardium -

- 12. Is a mambrane
- Endo cardium -
- 13. Thin
- 14. Mambrane
- Myocardium -
- 15. Thick layer
- 16. Of cardiac muscles
- 17. Has 4 cavities/ 4 chambers
- 18. 2 auricles and 2 ventticles
- 19. Auricles located superior to ventricles
- 20. Spetum divides heart in to 2 halves
- 21. Right and left
- 22. Each half with an auricle and a ventricle
- 23. Tricuspid valve between RA and RV
- 24. Bicuspid/ Mitral valve between LA and LV
- 25. Wall of ventricles has cone shaped projections
- 26. Known as papillary muscles
- 27. Tendinous cords (cordae tendincae) connects valves to papillary muscles
- 28. Pulmonary artery arises from RV
- 29. Opening is guarded by (pulmonary) semilunar valves
- 30 Aortic arch/ aorta arises from LV
- 31. Guarded by semilunar valves
- 32 Semilunar valves have 3 cusps
- 33. LA with 4 openings
- 34. For the entry of pulmonary veins
- 35. RA with 2 Openings
- 36. For the entry of superior vena cava
- 37. And inferior vena cava
- 38. Wall of ventricles thicker than the auricles
- 39 Wall of LV is thicker than the RV
- 10 Presence of coronary arteries

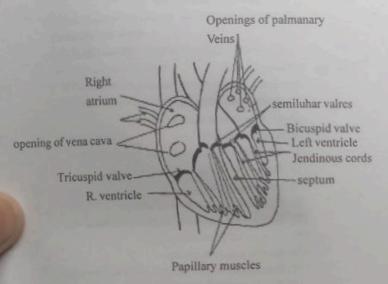
40 x 2 marks = 80 marks

(b) Cardiac cycle

- I Is the series of events that take place within a single heart beat
- 2 Consists of contraction and relaxation of the surcles and ventricles
- 3 Consists (of 3 stages) Atrial systole, ventricular system and cardiac diastole
- Last for 0.8 seconds

Atrial syatole -

- 5. Superior vena cava and inferior vena cava pour blood # to RA
- 6 4 pulmonaty veins pour blood in to LA
- 7 AV Valves open
- 8. Both atria contracts simultaneously
- 9 Caused by stimulation of SA node
- Forcing blood into ventricles


11. Takes 0.1 seconds

Ventricular systole -

- 12. Both ventricles contracts stimultaneously
- 13. Caused by stimulation of AV node
- 14. And spread of impulse Via AV bundle
- 15. And Perkinji fibres
- 16. Semilunar valves open
- 17. Forcing blood out through pulmonary artery
- 18. And aorta
- 19. AV Valves closed
- 20. Takes 0.3 seconds

Atrial and ventricular diastole/ complete cardiac diastole-

- 21. Both atria and venticles relax to gether
- 22. Blood flows into atria
- 23. From vena cavae and pulmonary veins
- 24. Takes 0.4 seconds

25 x 02 marks = 50 marks

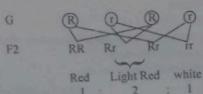
Fully labeled correct diagram - 20 marks Partially labeled correct diagram - 10 marks Unlabeled corred diagram - 5 marks 80 + 50 + 20 = 150Total = 150 marks

03. (a) Incomplete dominance

(1) Dominance of alleles of a gene is partial/incomplete

(2) Two homozygotes have different characters

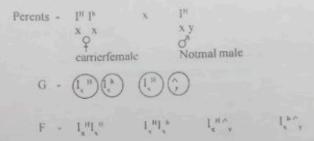
(3) Heterozygote has intermediate character between two homozygotes


(4) In mendelian crosses F₂ progeny segregate in 1:2:1 ratio
(5) Cause of deviation from Mendal's 1" law

(6) Example Mirabilis flower colour

(7) Correct diagramattic representation

(a) Incomplete dominance RR X rr


> White Rr - light red FI FIXFI Rrx Rr

Example:- Mirabilis flower colour

- (b) Humansex linked inheritance
 - (1) Shown by genes carried in X chromosome
 - (2) Shown by recessive mutations/ recessive gene/ recessive allele
 - (3) Expressed in males because thay carry only one x - chromosme
 - (4) Not expressed in females because they carry two x - chromosme
 - (5) Heterozygous females are carriers/ inherited from mother to son
 - (6) Rare in population/ not common
 - (7) Examples colour blindness/ Haemophilia
 - (8) Correct diagramattic representation

Sex tinked inheritance of Man

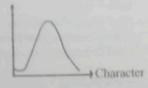
Normal female carrier female Normal female Affected male

Example Haemophilia

- (c) Poloyallelism
 - (1) More than two forms of alleles of a gene (in population)
 - (2) Different alleles produce different features
 - (3) Alleles may show dominance or codominance
 - (4) Example human ABO blood grouping
 - (5) Progeny may or may notbe similar to parents.
 - (6) Deviation from Mendal's Patterm
 - (7) Correct diagramatic representation

INIV IN - Blood group A - Blood group B 1818, 18 i IAIB Blood group AB Blood group O

Rerents -INE Blood group Blood group In F (Children) [A]B B.G. AB B.G.A B.G.B B.Go


Example Human ABO Blood groups

- (d) Polygenic Inheritance
 - (1) Many genes determine the same character
 - (2) Alleles may show dominance
 - (3) Genes show independent segregration
 - (4) Genes have additive/ cooperative effect
 - (5) Character produced is quantitative
 - (6) Distribution of the character in population is normat/ extremes of character are rare, intermediates are common

- (7) Examples, any quantitative character of humans, plants or animals, Height, weight, skin colour, 1Q number of flowers, fruits, eggs, ammount of milk in cows etc.
- (8) Correct diagramattic representation

T₁T₁T₂T₂T₃T₃T₄T₄ x t₁t₁t₂t₂t₃t₄t₄ lindividuals with extream characters Large number of intermediates

Frequency in Populution

 $30 \times 5 = 150 \text{ marks}$

Total = 150 marks

- 04. Soil contains a diversity of microorganisms
 - (1) Bacteria/actinomyceties
 - (2) Cyanobacteria
 - (3) Fungi
 - (4) Algae
 - (5) Viruses
 - (6) Protozoa
 - (7) They may be pathogens/ Parasites
 - (8) Autotrophic microorganism/ photosynthetic
 - (9) Chemosynthetic
 - (10) Hetertrophic/ Saprophytic
 - (11) Aerobic
 - (12) Anaerobic
 - (13) Biomass/number is different in different environments
 - (14) Distribution of microorganisms vary with depth/more microorganisms are found on surface layers
 - (15) Microorganisms make plant nutrients available in soil
 - (16) By decomposing
 - (17) Dead plant and animal organic matter
 - (18) And recycling minerals
 - (19) Such as carbon/ nitrogen / phosphorus
 - (20) Some free living microorganisms
 - (21) Such as Azotobactori Nostoci Anabaena
 - (22) Some symbiotic microorganisms
 - (23) Such as Rhizobium/ Anabaena
 - (24) Fix atmospheric nitrogen
 - (25) Microorganisms in the rhiozosphere
 - (26) Produce plant growth substances such as
 - (27) IAA/ Giberellic Acid
 - (28) Inhibitory substances
 - (29) For pathogenic organisms
 - (30) Some contribute to formation of soil aggregates/ improvement of soil structure
 - (31) By producing slime/gum or fungal filaments
 - (32) Mycorrhizal association with roots of higher plants
 - (33) Make availble soluble nutrients/ phosphates
 - (34) Some microorganisms which are pathogenic cause diseases in plants/ affect plant growth adversely.

any 30 x 5 = 150 marks

- 05. Agiicutural practices
 - (1) Removing natural vegetation for agriculture
 - (2) Burning vegetation
 - (3) Tilling soil
 - (4) Use of fertilizer

- (5) Use of pesticides
- (6) Irrigation
- (7) Removing harvest

Impacts

- (8) Decrease biodiversity
- (9) Remove balance in ecosystem activities
- (10) Increase CO,
- (11) Expose soil to heat and rain
- (12) Cause crosion of soil
- (13) Leaching of nutrients
- (14) Decrease of soil fertility
- (15) Pollution of ground water
- (16) Pesticides removes useful/ harmless organisms
- (17) Irrigation causes increase of salinity
- (18) Invasion by exotic weeds
- (19) Monocultures cause epidemic damages to crops

19 x 8 = 152 marks (Max 150 marks)

06. (a) Human pancreas

Location :

- (1) In the abdominal cavity
- (2) In the curve of the duodenum

Structure and function:

- (4) Consists of head, body and (narrow) tail
- (5) Both exocrine and
- (6) Endocrine gland
- (7) Exocrine part made up of lobules
- (8) Each lobule formed of number of small alveoli
- (9) Of acini cells/ secretary cells
- (10) Secrets pancreatic juice
- (11) Consists of water, mineral, salts and enzymes
- (12) Enzymes are amylase
- (13) Lipase
- (14) Trypsinogen
- (15) Chymotripsinogen
- (16) Nucleases
- (17) Caboxypeptidase/ peptidase
- (18) Lobules drained by small ducts
- (19) Unites to form pancreatic duct
- (20) Endocrine part is the Islets of Langerhans
- (21) Formed of and B cells
- (22) Ot cells secretes glucagons
- (23) B cells seretes insulin

22 x 3 = 66 marks

(b) DNA Fingerprinting

- (1) Use of DNA to establish identity of individuals involves
- (2) Extraction / perfication of DNA from a tissue sample
- (3) Restriction enzyme digestion
- (4) Electrophoresis in gel-
- (5) Blotting / bound into filter paper
- (6) Hybridisation
- (7) With probe DNA
- (8) Electrophoresis gives a characteristic pattern of bands
- (9) Used to identify criminals
- (10) Parents and other family members

10 x 3 = 30 marks

- (C) Non photosynthetic modes of nutrition in plants.
 - (1) Symbiotic relationships such as
 - (2) Mutualism
 - (3) Example Rhizobium bacterium
 - (4) Providing nitrogen to legumes
 - (5) Fungi in Mycorrhiza of plant roots
 - (6) Providing mineral and water
 - (7) Commensalism
 - (8) Orchides growing as epiphytes
 - (9) Getting mineral nutrition from barks of trees
 - (10) Semiparasites examples
 - (11) Loranthes
 - (12) Getting mineral nutrition
 - (13) From host trees
 - (14) Total parasites example
 - (15) Cuscuta
 - (16) Getting carbon
 - (17) And mineral nutrition from host plant
 - (18) Insectivorous plants
 - (19) Examples, Nepenthes or Drosera or Utricularia
 - (20) Getting nitrogen nutrition from inseet traps

 $18 \times 3 = 54 \text{ marks}$ Total $50 \times 3 = 150 \text{ marks}$