Chemistry II/Three hour

- Periodic Table is provided on page 14.
- Use of calculators is not allowed.

PART A - Structured Essay (Pages 2-7)

- Answer all the questions on this paper itself.
- Answer all the questions of the space provided for each question write your answer in the space provided is sufficient for the space provided is sufficient for the space provided in the s Write your answer in the space provided is sufficient for the answer are not expected.
- and that extensive answers and 4, you may represent alkyl

e.g.
$$H = \begin{bmatrix} H & H \\ I & I \\ C & C \end{bmatrix}$$
 may be shown as CH_3CH_2 .

PART B and PART C - Essay (pages 8-13)

- Answer four questions selecting not more than two questions from each part. Use the paper supplied for this purpose,
- At the end of the time allotted for this paper, tie the answers to At the end of the time and C together so that Part A is on top and hand
- You are permitted to remove only Parts B and C of the question
- Take R = $8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ and } N_A = 6.022 \text{ x } 10^{23} \text{ mol}^{-1}$

PARTA - STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question

carries 10 marks.)	ma paper itself. (Each question
l. (a) Define "ato	mic mass unit."
***************************************	3 45 25 3
	(1.0 marks)
(b) The elemen linear and A	t A forms the anions AF, and AF, AF, is F, is square plannar in shape.
(1) Sketch t	he shapes of AF ₂ and AF ₃ indicating the nent of lone pairs if any, on the central atom.
	profit and the second
	, and the second
AF;	
2	AF,
(ii) State the	group in the periodic table to which A belongs
	(4.0 marks)

	$X + Be \rightarrow \frac{12}{6}$	C +	Y			
(i)	Fill in the blanks places in the abov	denote	ed by d	otted lir	nes ()	at three
	Identify X and Y.					
	X =		. Y	=		
						-
	a . ii antion one	:			-	5 marks)
the pand elem give	first ionization energeriodic table with Z+4 are given belnents is a metal. The in any particular zation Energies: 4	ow. Z ne ion r orde	is less to ization r.	chan 16 energy	Z+1, Z and one values a	2+2, Z+3 of these are not
Writ	te in the table given te for each element	belov	v, the re	levant i	onizatio	n energy
Atomic	number	Z	Z+1	Z+2	Z+3	Z+4
-	on energy /kJ mol-		-			ZT4
Ionizatio	on energy 7ks mor		25	1.		
					(2.:	5 marks)
(a) X.H	is a white crysta	lline s	salt. Th	e eleme	nts pres	ent in X
and	Element C		Н	N		
		94	6.4		6 51	
	(C = 12. 0, H = 1					. 0
-	Deduce the empir				. 0)	
(1)	Deduce the emph	icai io				

(ii)	On heating, one mas the only nitrog molecular formula	gen co	ntainin			
		•••••				
(iii)	A warm aqueous : KMnO ₄ solution.					
) marks)
(b) (i)	What is meant by $CO_2(g)$?	the sta				
(ii)	When a sample of standard condition tain by mass 28%	s, the CO(g)	product	mixture O ₂ (g) a	e is foun nd unbu	rnt C(s).
(ii)	standard condition	of for of for	product , 66% C	mixture CO ₂ (g) a of CO(g	of is found in the second in	rnt C(s). kJ mol-1
(ii)	standard condition tain by mass 28% Standard enthalpy Standard enthalpy (C = 12.0, O = 16 1. Calculate the	of for of for of for of for of for follow	product), 66% C mation mation o	mixture CO ₂ (g) a of CO(g of CO ₂ (g	is found unburs) = -111 g) = -394	rnt C(s). kJ mol ⁻¹
(ii)	standard condition tain by mass 28% Standard enthalpy Standard enthalpy (C = 12.0, O = 16 1. Calculate the A The mole rations of the conduct mixture.	of for of for of for of of Collow	product , 66% C mation mation c ving:	mixture $CO_2(g)$ a of $CO_2(g)$ of $CO_2(g)$ of $CO_2(g)$	e is found unbut $(x) = -111$ $(x) = -394$ $(x) = -394$	mt C(s). kJ mol ⁻¹ kJ mol ⁻¹ in the
(ii)	standard condition tain by mass 28% Standard enthalpy Standard enthalpy (C = 12.0, O = 16 1. Calculate the A The mole rati product mixto	of for of for of for o. 0) follow o of C	product), 66% C mation mation c ving:	mixture CO ₂ (g) a of CO(g of CO ₂ (g	e is found unbut $(x) = -111$ $(x) = -394$ $(x) = -394$	mt C(s). kJ mol ⁻¹ kJ mol ⁻¹ in the
(ii)	standard condition tain by mass 28% Standard enthalpy Standard enthalpy (C = 12.0, O = 16 1 Calculate the A The mole rati product mixto	of for of for of for of collow of Collow	product b, 66% C mation mation o ving:	mixture CO ₂ (g) a of CO(g of CO ₂ (g	e is found unbut $(x) = -111$ $(x) = -394$ $(x) = -394$	mt C(s). kJ mol ⁻¹ kJ mol ⁻¹ in the
(ii)	standard condition tain by mass 28% Standard enthalpy Standard enthalpy (C = 12.0, O = 16 1. Calculate the A The mole rati product mixto	of for of for of for of collow of Collow	product b, 66% C mation mation o ving:	mixture CO ₂ (g) a of CO(g of CO ₂ (g	e is found unbut $(x) = -111$ $(x) = -394$ $(x) = -394$	mt C(s). kJ mol ⁻¹ kJ mol ⁻¹ in the

				anne Valenced	
			B.	The number of moles of CO(g) released.	*
			-	- C - L CCO (a) released	
			C.	The number of moles of CO ₂ (g) released.	
			D,	The heat released on burning 1.0 mol of graunder standard conditions.	aphite
				under standard conditions.	
				••••••	
		900			ice
			11.	Using the above thermochemical data, dedu whether the conversion of CO(g) to CO ₂ (g standard conditions, is endothermic or exol), under
					•••••
8.					
				(5.0	marks)
3.	(a)	An	indi bon,	ustrially important organic compound X, co hydrogen and oxygen only.	ntains
		(i)	Wr	ite a balanced chemical equation for the compubustion of X taking its molecular formula as	olete C _x H _y O _y .
		(ii)	M,	e combustion of 62 mg of X (relative molecul = 62) gives 88 mg of CO_2 and 54 mg of H_2O . ues for x, y and z in the molecular formula G_2O_2 (relative molecular formula G_2O_2)	Deduce
b	-	7.5	·11		
	- 19	9.			
		1.5			
		(iii)	hyd	reaction of 62 mg of X with sodium gives rogen gas. Deduce the structure of X.	2 mg of
	÷				
				(4.4	marks,
	(b)	(i)	eacl	at is the main type of intermolecular force properties of ethanol ($M_r = 46$), methanoic acid ($M_r = 46$)?	
			In e	thanol:	
			In n	nethanoic acid :	
			In p	ropane :	
36		(ii)		ange ethanol, methanoic acid and propane i	
8				reasing order of their boiling points.	
		(iii)	Exp	olain your answer in (ii) above.	

the hybridisation of the carbon and oxygen atoms indicated arrows as sp. sp² or sp³ in he appropriate circle

(d) An optically active compound, C₆H₁₂O, gives a yellow precipitate with 2,4 - dinitrophenylhdrazine but does not react with ammoniacal silver nitrate. What is the structure of the compound?

(1.6 marks)

4 (a) Consider the following reaction sequence.

(i) Write the structures of A,B,C and D in the boxes given below.

(ii) Classify each of the reactions in the above sequence as addition (Ad). elimination (E). rearrangement (R) or substitution (S) by writing Ad, E, R or S in the appropriate cage.

1	2	. 3	4
- 4			_
		2	

(iii) Write the active species and whether it is an electrophile or a nucleophile, in each of the reactions 1 and 2 in the appropriate cages.

Active species	Electrophile/ Nucleophile
C	
2 2 2	
	Active species

(2.4 marks)

- (b) Complete the syntheses in schemes A and B selecting appropriate reactants/ reagents/ solvents only from those given with each scheme.
 - Write the structures of appropriate compounds in the boxes and the reagents/ solvents in the circles.
 - Indicate temperature where it is important.

(i) Scheme A

Reagents/ solvents . Mg, P2O3, PCl3, LiAlH4, NaBH4, CH3CHO, conc. NH3. dil. H2 SO4, water, dry ether

(i) Scheme B

Reactants/ regents / solvents : nitrobenzene, toluene (C₆H₅CH₃), CH₃Cl, AlCl₃. Zn(Hg), Sn, KMnO₄, NaNO₂, conc. HNO₃, conc. H,SO, conc. HCl, aq. NaOH, water. ethanol

PART B - ESSAY

Answer two questions only. (Each question carries 15 marks.)

• Take R = 8.314 JK⁻¹ mol⁻¹ and N_A = 6.022 x 10²³ mol⁻¹

5. (a) (i) 2.0 mol of X(g) was heated upto 450 K in a closed container to establish the equilibrium.

$$X(g) \rightleftharpoons 2Y(g)$$

At this equilibrium, it was found that 25% of the initial amount of X(g) was decomposed to produce Y(g) and the total pressure was 6.0 x 10⁵ Nm⁻².

Calculate the following:

I. The mole fractions of X(g) and Y(g) at equilibrium

II. The equilibrium constant, K

(ii) When the temperature of the above system was increased to 600 K, Y(g) also underwent decomposition to establish the following equilibrium.

$$X(g) \Longrightarrow 2Y(g) \Longrightarrow Z(g)$$

When 2.0 mol of X(g) was initially used, it was found that 1.0 mol X(g) and 0.50 mol Z(g) were present together with Y(g) at equilibrium.

1. Calculate the following:

(A) The number of moles of Y(g) at equilibrium.

(B) The mole fractions of X(g), Y(g) and Z(g) at equilibrium.

(C) The total pressure of the system at equilibrium.

(D) The equilibrium constant for $X(g) \rightleftharpoons 2Y(g)$

 (A) State the assumptions, if any, you used in part C above.

(B) Is the reaction X(g) → 2Y(g) exothermic or endothermic? Briefly explain your answer.

(9.0 marks)

(b) (i) 75.0 cm³ of an aqueous solution of solute E was shaken well with 50.0 cm³ of CHCl₃ at room temperature, and allowed the two layers to reach equilibrium. Calculate the distribution coefficient, K₀, for the distribution of E between CHCl₃ and water if 75% of E (mol %) was extracted into the organic phase at equilibrium.

(ii) Two unreactive liquids X and Y, which are completely miscible in all proportions, are at equilibri with their vapour phase over the temperature range from T_x to T_y. This equilibrium is shown in following phase diagram.

Use the at ove phase diagram to answer parts I a. 111 below.

- If an equimolar solution of X and Y is a equilibrium with the vapour phase, what is the mole ratio of X and Y (X:Y) in the vapour phase
- Briefly explain how a mixture of X and Y could be separated into pure components.

(6.0 marks)

6 (a) Four titrations were conducted using different acid and base solutions as shown in the table below.

Titra tion	Acid solution	Volume of acid solution /cm³	Base solution
I	0.300mol dm-3 HC1	25.00	0.300mol dm ⁻¹ NaOH
11	0.030 mol dm ⁻³ HCl	25.00	0.030 mol dm ⁻³ NaOH
Ш	0.300 mol dm ⁻³ CH,COOH	25.00	0.300 mol dm ⁻¹ NaOH
ľ	0.150 mol dm-3 CH,COOH	25.00	0.150 mol dm ⁻¹ NaOH

(i) The pH - titration curve of titration I is given below.

Volume of NaOH added/cm3.

Points A,B and C of the curve represent the additions of 12.50 cm³. 25.00 cm³ and 50.00 cm³ volumes of the NaOH solution respectively to the HCl solution. Calculate the pH values corresponding to these three points.

(ii) For each of the titrations II, III and IV, indicate whether the pH values corresponding to the add of 12.50 cm³. 25.00 cm³ and 50.00 cm³ of the NaOH solution, decreased, increased or remain unchanged with respect to the points A,B and C of titration I. Use a table as shown below in your answer script to answer this part of the question.

Titrations	Volume of NaOH added/cm ³		
	12. 50	25. 00	50.00
11	Intition In the	Lagranda	
III .		278,000	100
IV			

(iii) Give reasons for changes in pH values you mentioned in titration III.

(9.0 marks)

(b) Chlorine dioxide (ClO₂) undergoes the following reaction in alkaline medium.

$$2CIO_{2}(aq) + 2OH^{2}(aq) \rightarrow CIO_{1}^{2}(aq) + CIO_{2}^{2}(aq) + H, O(1)$$

The initial rates determined for the above reaction carried out at a constant temperature by changing the initial concentration of ClO₂ and initial pH are given below.

Initial concentration of ClO ₃ / mol dm ⁻³	Initial pH	Initial rate mol dm ⁻³ s ⁻¹
0,060	12	0.022
0.020	12	0.0025
0.020	13	0.024

- (i) Calculate the order of the reaction with respect to ClO₂ and with respect to OH
- (ii) The mechanism of the above reaction does not change when the temperature is increased by 10°C Predict whether.
 - I. the rate of the reaction
 - the order with respect to each reactant would increase, decrease or remain unchanged when the temperature is increased by 10°C.

(6.0 marks)

- (a) (i) At room temperature, 25.0 cm³ of 4.00 x 10⁻³ mol dm⁻³ AgNO₃ solution were maixed with 75.0 cm³ of 8.00 x 10⁻³ mol dm⁻³ NaBr solution.
 - I. Show that a precipitation occurs.
 - The resulting precipitate was separated and dried.
 Calculate the mass of the dry precipitate.
 - (ii) A 0.166 g sample of Ag₂CrO₄ was thoroughly shaken with 50.0 cm³ of distilled water at room temperature. 50.0 cm³ of 2.00 x 10⁻⁵ mol dm⁻³ NaCl solution were then added to the resulting Ag₂CrO₄ suspension and mixed well. The following changes were then observed.
 - (A) The reddish-brown precipitate dissolved and a white precipitate was formed.
 - (B) The colour of the supernatant solution became distinctly yellow.

Explain the above observations using suitable calculations.

Relative molar masses: AgCl = 14

AgCl = 143.5, AgBr = 188.0, $Ag_2CrO_4 = 332.0$

At room temperature,

 $K_{\rm sp}$ (AgBr) = 5.0 x 10⁻¹³ mol² dm⁻⁶

 $K_{\rm sp}$ (AgCl) = 1.8 x 10⁻¹⁰ mol² dm⁻⁶

 $K_{\text{up}} (Ag_2 \text{CrO}_4) = 2.4 \times 10^{-12} \text{ mol}^3 \text{ dm}^{-9}$

Molar solubility of $Ag_2CrO_4 = 8.4 \times 10^{-3} \text{ mol dm}^{-3}$

(10.0 marks)

(b) Consider the following electrochemical cell.

7

- (i) Which electrode (A or B) is the cathode?
- (ii) Which electrode (A or B) is negatively charged?
- (iii) Write a balanced equation for the electrode reaction that occurs at A.
- (iv) Write a balanced equation for the electrode reaction that occurs at B.
- (v) Write a balanced equation for the overall cell reaction
- (vi) Give one chemical test in each case to show the formation of the ionic species that you have given in (iii) and (iv) above.
- (vii) The overall cell reaction you have given in (v) above occurs during a common natural process. Name this process.

(5.0 marks)

PART C - ESSAY

* Answer two questions only. (Each question carries 15 marks.)

- 8. (a) A solution Y contains dil. H2SO4 and oxalic acid.
 - (i) 25.00 cm³ of this solution was titrated with a 0.050 mol dm³ KMnO₄ solution. The volume of KMnO₄ solution required was 24.00 cm³.
 - (ii) The solution obtained after completing the titration (i) was further titrated with a 0.040 mol dm⁻³ NaOH solution. The volume of NaOH solution required was 15.00 cm³
 - I. Write balanced chemical equations for the reactions.
 - II. Calculate the concentrations of
 - (A) Oxalic acid and
 - (B) H₂SO₄ acid

in the solution Y.

(8.0 marks)

- (b) (ii) Using balanced chemical equations only, suggest one method for the synthesis of each of the following compounds starting from limestone.
 - Bleaching powder
 - II. A phosphorus fertilizer
 - III. Acetylene
 - (ii) During April 2009, a ship containing 6500 tonnes of conc. H₂SO₄ sank off the port of Trincomalee. Predict the possible threats/impacts that could occur due to leaking of conc. H₂SO₄ to the marine environment.

(7.0 marks)

08 (a) (i) Outline briefly how you would identify the following dilute aqueous solutions by mixing them with one another.

KI, Fe, (SO,), BaCl, K, Fe (CN),

 Outline how you would identify the following aqueous solutions/finely powdered metals by reacting them with one another.
 Al, Zn, NH, Cl. NaOH

(7.0 marks)

(b) A is a coloured inorganic salt containing the metallic element M. On heating, A decomposes giving a green residue B (M₂O₃), a colourless gas C and water vapour. One mole of A gives one mole of residue B. The gas C reacts with heated magnesium forming a white solid D. D reacts with water forming a gas E which turns red litmus blue. Heating A with Na₂CO₃ solution also produces the gas E. The green residue B gives a yellow solution when warmed with an alkaline solution of H₂O₂.

(i) Identify A,B, C, D and E,

(ii) Write balanced chemical equations for the relevant reactions.

(8.0 marks)

- (a) (i) In the determination of dissolved oxygen in a sample of water, 250 cm³ of the water sample was treated with a solution of MnSO₄ and an excess of KI in an alkaline medium. The solution was then acidified and the liberated iodine was titrated with 0.020 mol dm³ Na₂S₂O₃ solution. The volume of Na₂S₂O₃ solution required was 10.00 cm³.
 - Give balanced chemical equations for the relevant reactions.
 - (II) Calculate the concentration of dissolved oxygen in mg dm⁻³ of the water sample. (O = 16.0)
 - (ii) Hydrogen peroxide is decomposed into H₂O and O₂ on warming.
 - Write balanced ionic equations for the two half reactions relevant to this decomposition.
 - II. Outline one titrimetric method to determine the concentration of an aqueous solution of H₂O₂. (No experimental details are required)

(7.5 marks)

(b) To answer this part of the question, use the page 13 (at the end of PART A) which contains a flow chart.

Consider the production of Na₂CO₃ by Solvay process. In the flow-chart provided, (page No. 13)

- (i) write in the triangles A,B and C, the starting meterials
- (ii) write in the box D, two by-products formed during the concentration of the starting material in B.
- (iii) write in the box E the waste material produced in the process.
- (iv) write in the circles the chemical formulae of the appropriate substances involved in the process.

Only use this page to answer question numbe 10 of PART C.
 (Question number 10 is not compulsory)

Write in spaces provided below, the balanced equations for chemical reactions taking place at F,G and in tower 1.

(v) at F	
(vi) at G	
(vii) in tower 1	