Important

- . This paper consists of 08 pages (Periodic Table is also provided)
- Answer all the questions
- Use of calculators is not allowed.
- Write your Index Number in the space provided in the answer
- Instructions are given on the back of the answer sheet. Follow those carefully
- In each of the questions 1 to 50, pick one of the alternatives, from (1). (2). (3). (4), (5) which is correct or most appropriate and mark your response on the answer sheet with a cross (x) on the number of the correct option in accordance with the instructions given on the back of the answer sheet.

Universal gas constant. R = 8.314 JK-1 mol-1 Avogadro Constant N_A = 6.022 x 10²³ mol-

- 1. The number of elements that exist as gases at room temperature is. (4)11
 - (1) 8
- (2)9
- (3)10
- (5) 12
- 2. The electronic configuration of the element (X) that forms a diatomic molecule (X_2) with the highest bond energy is,
 - (1) 1s2 2s22p63s1

(2) Is22s22p4

(3) 1s²2s²2p³

(4) Is²2s²2p¹

- (5) Is²2s²2p²
- 3. Among the following, the molecules/ions having the same shape are,
 - (A) NH,
- (B) H,O*
- (C) CIF,

- (D) BC!,
- (E) PCI,
- (1) A and C
- (2) C and D
- (3) A, B and E

- (4) C. D and E
- (5) B and C

The correct increasing order of the acid strength of the compounds A,B,C and D is,

- (1) A < C < B < D
- (2) D<C<A<B
- (3) B<D<C<A

- (4) C<A<B<D
- (5) A < C < D < B
- 5. A solution of Na₂SO₄ has been prepared by dissolving 142 mg of pure Na, SO, in water, in a 500 cm3 volumetric flask and by diluting up to the mark. The Na* ion content in mg dm-3 units in this solution is, (O = 16.0, Na = 23.0, S = 32.0)
 - (1) 2.00x10⁻³
- (2) 4.00x 10⁻³
- (3)46

- (4)92
- (5)184
- 6. The decreasing order of the volume percentages of the gases (A) Ar, (B) CO, (C) H, (D) N, and (E) O, in air, in general is,
 - (1) D>E>B>A>C
- (2) D>E>A>B>C
- (3) D>E>B>C>A

- (5) D>A>E>B>C
- (4) E>D>A>B>C
- 7. Which of the following reacts most rapidly when mixed with ZnCl, and conc. HCl?
- СӉСӉҪ҅ҤѺҤ
- (4) CH,CH,CH,CH,OH
- (5) CH, = CHCH, CH, OH A/L 'Chemistry - Past Pana

	The mass percentage of $Na_2S_1O_3$, $5H_2C$ in an aqueous solution is 20%. The density of this solution at room temperature is 1.24 g cm ³ . The density of $Na_2S_2O_3$ is this solution is.		
e	The mass percentage of this solution at room temperature 20%. The density of this solution is, the molarity of $Na_3S_3O_3$ is this solution is. The molarity of $Na_3S_3O_3$ is this solution is, $1.0.0 = 16.0.0$ $16.0.0$ $16.0.0$ 10.0		
0.	20% The density of this Solution The motarity of $Na_1S_2O_3$ is this solution The motarity of $Na_1S_2O_3$ is this solution (11 = 1.0, $O = 16.0$, $Na = 23.0$, $S = 32.0$) (11 = 1.0, $O = 16.0$, $Na = 23.0$, $O = 16.0$) (2) 1.0 x 10 ⁻³ (3) 0.050 (4) 1.6 (5) 0.10		
	The molarity of $Nn_1 = 23.0$, $S = 32.0$ (4) 1.6 (5) 0.10		
	The molarity of 1.0×10^{-3} (3) 0.050 (4) 1.6 (5) 0.10 (1) 1.0 (2) 1.0 x 10 ⁻³ (3) 0.050 (4) 1.6 (5) 0.10		
	(1) 1.0 (2) 1.		
	(1) 1.0 (2) 1.0 x 10° (3) and true regarding transition which of the following statements is not true regarding transition or in general?		
0	Which of the following		
9.	1		
	(1) They all are metals. (2) They form complex cations. (2) They form oxy-anions. (3) They do not form oxy-anions.		
	(A) They are		
	(5) They have		
). Which of the following electronic configurations corresponds to Which of the following electronic radius among them? (2) 1s ² 2s ² 2p ⁶ (4) 1s ² 2s ² 2n ⁶ 3s ² 3n ²		
10	Which of the largest atomic radius arrong with the largest atomic radius arrong (2) ls ² 2s ² 2p ⁶		
	the afoll with		
	(1) $1s^2 2s^2$ (4) $1s^2 2s^2 2p^4 3s^2 3p^2$		
	(3) Is 25 2p 33 3p3		
	(3) 18 23 2p 33 23p 3 (5) 18 22 8 2p 3 3 2 3p 3 1. In which of the following groups of molecules/ions, nitrogen is the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions, nitrogen is 1. In which of the following groups of molecules/ions and 1. In which of the following groups of molecules/ions are properly in the following groups are properly in the following groups of molecules/ions are properly in the following groups of molecules/ions are properly in the following groups ar		
	Viab of the following groups of molecules to the following groups of the following gro		
11	in the oxidation states -3, 0 and +3 respectively? (2) N ₂ O ₃ , N ₂ , NH ₂		
	in the oxidation states -3, 0 and +3 respectively? (1) NH' ₄ , N ₂ , NH' ₂ (2) N ₂ O ₃ , N ₂ , NH' ₄ (1) NH' ₄ , N ₂ , NH' ₂ (4) NO ₂ , N ₂ , NO ₂		
	(1) NH ₂ , N ₂ , NCI ₃ (3) N ₂ H ₄ , N ₇ , NCI ₃		
	(5) NH' ₁ , N ₂ , N ₂ O ₃		
	(3) Nr. 4. 77. 2. 3		
11	2. What is the IUPAC name of the following compound?		
1.	CH ₃ -C-CH = CH-CH-CO ₂ H		
	CU -C-CH = CH-CH-CO, H		
	(1) 5 - Carboxyhex -3-en-2-one		
	as a Auchay 1-60-2-Cal DUA 1110 as		
	(3) 5-Methyl-2-oxohex-3- enoic acid		
	(A) 2 Mathylhex-3-0n-3-clivic deve		
	(5) 2-Methyl-5-oxohex -3-enoic acid		
1	3. The correct increasing order of the first ionization energies of		
	the elements from Li to P is.		
	(1) Li <b<be<c<o<n<f (2)="" (3)="" (4)="" li<be<b<c<n<o<f="" li<be<b<c<o<n<f="" li<be<b<o<c<n<f<="" td=""></b<be<c<o<n<f>		
	(5) Li <b<be<o<c<n<f< td=""></b<be<o<c<n<f<>		
	A A second of University of the state of the		
,	 A sample of H-atoms excited in a flame has electrons distributed in n = 1,2,3,4 and 5 energy levels. How many different wavelengths 		
	of radiation are emitted by the sample according to Bohr theory?		
	(1) 4 (2) 5 (3) 8 (4) 10 (5) 15		
	(1)4 (2)5 (3)6 (4)10 (5)		
1	5. The relative molecular masses of X and Y are in the ratio 2:3. In		
	a mixture of X and Y the mole fraction of X is 1/3. The mass		
	percentage of X in the mixture is,		
	(1) 10% (2) 25% (3) 33.3% (4) 50% (5) 75%		
1	6. Which of the following statements is not true regarding $\Pi_1 O_1$?		
	(1) H ₂ O ₂ disproporitionates when heated.		
	(2) In acid medium, Fe ²⁺ jons reduce H.O. to H.O.		
	(3) Ag ₃ O exidizes 1! O ₁₀ O		
	(4) 11,0, is used as an antisentic		
	(5) The dipole moment of H ₂ O ₂ is zero.		
1			
F	7. The product that results when citronellal		
1' (11, 11			
Ì	CH, CH CHO shown as		
	cat to the cat		
L	, H,,		
	is treated with sodium borodeuteride (NaBD ₄) followed by hydrolysis with water is		
	hydrolysis with water is		
)-1			

Sadama Dublisher

18. When a salt X was heated with dil. H2SO4, it evolved a gas that gives a white precipitate with a lead acetate solution. When X was heated with dil. H₂SO₄ and Zn, it evolved a gas that gives a black precipitate with a lead acetate solution. The anion present in X is,

 $(1) S^{2}$

(2) Cl-

(3) NO;

(4) CO2-

(5) SO₂-

19. The correct decreasing order of the ionic radii of the ions AP+, F, Mg2+, Na+ and O2- is,

(1) Al3+ >F->Na+>Mg2+>O2-

(2) Ai3+>Mg2+>OT>Na+>F

(3) O²⁻>F >Na⁻>Mg²⁺>Al³⁺

(4) $\Lambda I^{3+} Mg^{2+} Na^{+} F > O^{-}$

(5) F->O2->Na+>Al3+>Mg2+

20. The amounts of heat evolved when 25.0cm3 each of the following aqueous solutions are mixed together are given below.

Solutions mixed	Heat/avolved
0.1 mol dm-3 HCl and 0.1 mol dm-3 NaOH	ΔH
0.1 mol dm ⁻³ HCl and 0.1 mol dm ⁻³ NH ₄ OH	ΔH ₂
0.1 mol dm-3 CH, COOH and 0.1 mol dm-3 NH4OH	ΔH_3
0.05 mol dm ⁻³ H ₂ SO ₄ and 0.05 mol dm ⁻³ Ba(OH) ₂	

Which of the following is correct?

(1) $\Delta H_1 > \Delta H_2 > \Delta H_3 > \Delta H_4$

(2) $\Delta H_1 = \Delta H_2 = \Delta H_2 = \Delta H_1$

(3) $\Delta H_1 = \Delta H_2 > \Delta H_3 > \Delta H_2$

(4) $\Delta H_i = \Delta H_i > \Delta H_i > \Delta H_i$

(5) $\Delta H_{\star} > \Delta H_{\star} > \Delta H_{\star} > \Delta H_{\star}$

21. Of the following scientists, identify who was not connected with the development of the atomic theory?

(1) Neils Bohr

(2) J.J. Thomson

(3) Chadwick

(4) Linus Pauling

(5) Rutherford

22.CH,
$$CH_{3} = C$$

$$CH_{4} = C$$

$$CH_{5} = C$$

The correct increasing order of stability of the carbocations

A,B and C is, (1) A < B < C

(2) C<A<B

(3) B<C<A

(4) A<C<B

(5) C<B<A</p>

23. Which of the following is the strongest reducing agent in the gas phase?

(l) AI

(2) Na

(3) Zn

 $(4) H_{2}$

(5) F₂

24. Which of the following gases will react with an aqueous solution of FeBr,?

(A) SO,

(B) CO,

(C) H,S

(D) Cl,

(3) A, C and D

(1) A and B

(2) A, B and C

(4) C and D

(5) A,B and D

- 25. Which of the following statements is not true regarding electrolysis?
 - (1) Chemical energy is converted to electrical energy during electrolysis.
 - (2) The oxidation state of at least one element of a chemical species is changed in each electrode reaction.
 - (3) The pH of the solution is changed if H,O is a reactant only in one of the electrode reactions.
 - (4) The amount of a substance produced during electrolysis depends on the electric current passed.
 - (5) Electrolysis is a convenient method to produce some metals in pure state.
- 26. Which of the following will not evolve ammonia gas when heated with aqueous NaOH?
 - (1) Urea
- (2) (NH₄),CO,
- (3) NaNO, + Zn powder
- (4) [Cu(NH,),]SO,
- (5) NaNO,+Fe powder
- 27. What product would you expect when the compound
- undergoes bromination with Br, and FeBr,?

- (4)
- 28. Which of the followings can be used separately to distinguish between aqueous solutions of Na,CO, and NaHCO,?
 - (A) Phenolphthalein
- (B) Methyl orange
- (C) Litmas paper
- (D) Lime water

- (1) A and B
- (2) A, B and C
- (3) B and C

- (4) B and D
- (5) A and D
- 29. The equilibrium constant for the reaction;

 $Al^{3}(aq)+6F(aq) \leftarrow AlF_{6}^{3}(aq) \text{ at } 25^{9}C \text{ is } 1.0 \times 10^{25} \text{ mol}^{-6}dm^{18}$. The concentration of AIF, (aq) in mol dm-3 in the solution obtained when 25.0 cm3 of 0.010 mol dm3 Al(NO3), and 25.0 cm3 of 0.10 mol dm3 NaF are mixed with each other is,

- (1) 0.010
- (2) 0.0050
- (3) 0.017

- (4) 0.0084
- (5) 0.060
- 30. Hypophosphorous acid has the structure

Which of the following properties are consistent with the above structure?

- (A) It is a reducing agent.
- (B) It is a monobasic acid.
- (C) Phosphorus atom is in -1 oxidation state.
- (D) Phosphorus atom is in +1 oxidation state.
- (1) A only
- (2) B only
- (3) A and B only
- (4) A, B and D only (5) A, B and C only

31 The rates of the reaction of benzaldehyde compounds,

(where Y = NO2, Cl, CH, or OH) with hydrogen cyanide, under iden tical conditions follow the order.

(1) O₃N-C₆H₄-CHO<Cl-C₆H₄-CHO<CH₇-C₆H₄-CHO<HO-C₆H₄-CHO

- (2) HO-C₄H₄-CHO<CH₃-C₅H₄-CHO<CI-C₆H₄-CHO <O₂N-C₆H₄-CHO
- (3) CI-C₆H₄-CHO<CH₇-C₆H₄-CHO<HO-C₆H₄-CHO<O₃N-C₆H₄-CHO
- (4) CH,-C,H,-CHO<CI-C,H,-CHO<O,N-C,H,-CHO<HO-C,H,-CHO
- (5) O,N-C,H,-CHO-HO-C,H,-CHO-CH,C,H,-CHO-CI-C,H,-CHO
- 32. Which one of the following statements is not true about the hydrogen halides HF, HCl, HBr and HI?
 - (1) HF has the highest boiling point.
 - (2) HI has the lowest bond energy.
 - (3) HI is the strongest acid in aqueous solution.
 - (4) HF is the most covalent.
 - (5) HCl has the lowest boiling point.
- 33. Zn(s)/Zn2+ (aq. 1.0 mol dm-3) and Cu(s)/Cu2+ (aq. 1.0 mol dm-3) electrodes were combined through a salt bridge to construct an electrochemical cell. The standard reduction electrode potentials of the Zn2* (aq)/Zn(s) and Cu2*(aq)/Cu(s) electrodes at 25°C are - 0.76 V and +0.34 V, respectively. The experimentally measured e.m.f. of the above cell at the same temperature was 1.20 V. Which of the following statements would not be a possible reason for the deviation of the measured e.m.f. as compared to the expected value?
 - (1) The concentrations of solutions were slightly different from 1.0 mol dm⁻³.
 - (2) The temperature of measurement was different from 25°C.
 - (3) The Cu rod used to construct the Cu electrode had been corroded.
 - (4) The Zn rod and the Cu rod were immersed in Cu2+ and Zn2+ solutions, respectively.
 - (5) The potentiometer used to measure the potential was not functioning properly.
- 34. Compound A reacts with aqueous Na₂CO₃ releasing a gas that turns lime water milky. A is insoluble in aqueous NaOH. A gives a red dye when treated with nitrous acid followed by phenol in aqueous NaOH. What is the structure of A?

35. A 50.0 cm3 sample of 1.00 moi dm3 HCl solution was mixed with a 100.0 cm³ sample of 0.50 mol dm⁻³ NaOH solution in an insulated flask. Then the temperature of the solution mixture rose from 25.0°C to 29.5°C. If the specific heat of the solution mixture is 4.2 J°C·1 g-1 and the heat capacity of the flask is negligible, the enthalpy of neutralization of HCl and NaOH, in KJmol⁻¹ at this temperatue is, (1) 1.1

(3)57

- (2) 57000
- (4)570
- (5) 2.8

- 36. The structure of nylon 6,6 is,
- (1) -{CO-(CH,),-CONH(CH,),NH}
 - (2) {CO-(CH,),CONH(CH,),NH}
 - (3) \(\forall CO(CH_1)_NH_2

- (4) -{CO-(CH₂)₆CO-NH(CH₂)₆NH₃
- (5) -{CO(CH₂),CONH(CH₂),NH3,
- 37. 2-Butanol reacts with acidified sodium dichromate to give A.

 Another sample of 2-butanol reacts with PCl₃ to give B. When
 heated with magnesium and ether, B gives C. A and C react to
 give a product which hydrolysis produces D. What is the structure
 on of D?

 The structure which is closest to the true structure of the sulphate ion is

- 39. In which of the following solvents would hexane have the lowest solubility?
 - (1) Dichloromethane
 - (2) Diethyl ethre
 - (3) Ethanol
 - (4) Ethyl acetate
 - (5) Porpanone
- 40. What would happen to the concentration of Fe³⁻ in a saturaled solution of Fe(OH), when the pH of the solution is increased by one unit?
 - (1) Decrease by 1000 times.
- (2) Decrease by 10 times
- (3) Increase by 1000 times
- (4) Increase by 10 times
- (5) Remain unchanged.

Instructions for questions No. 41 to 50 ; for each of the questions \$1 to 50, four responses (a), (b), (c) For each of the correct of which, one or more is/ are correct. Select and (d) are given; out of which, one or more is/ are correct. Select and (a) are seponse/responses. In accordance with the instructions the correct response/responses, mark given on your answer sheet, mark.

(1) if only (a) and (b) are correct.

- (2) if only (b) and (c) are correct.
- (3) if only (c) and (d) are correct.
- (4) if only (d) and (a) are correct. (4) if condition of responses is correct.
 (5) if any other number or combination of responses is correct.

Summary of above Instructions

	(3)	(4)	(5)
Only (a) Only (b) and (c) correct.	Only (c) and (d) correct.	Only (d) and (a) correct.	Any other number or combination of responses correct.

- 41 Which of the following statements regarding water is/are true?
 - (a) Water reacts more readily with ethanoyl chloride than with chloroethane.
 - (3) Water reacts readily with CH3MgBr to produce methanol.
 - (c) The dipole moment of a water molecule is zero.
 - (3) In ice, four hydrogen atoms are arranged tetrahedrally around each oxygen atom.
- 42 Which of the following substance(s) would produce acidic solutions when dissolved in water?
 - (a) NH,Cl
- (b) NH,CIO,
- (c) CH, COONa
- 43. A and B are two miscible liquids. The boiling point of A is higher than that of B. An equimolar solution of A and B is placed in an evacuated vessel and allowed to reach equilibrium with its vapour. Which of the following is/are true regarding this system? (Assume ideal behaviour.)

At equilibrium,

 $X_A =$ mole fraction of A in solution phase.

 $X_B = mole$ fraction of B in solution phase.

 $Y_A =$ mole fraction of A in vapour phase.

Y = mole fraction of B in vapour phase

(a)
$$X_{A} = X_{B}$$
 (b) $X_{A} + X_{B} = Y_{A} + Y_{B}$ (c) $X_{A} < X_{B}$

- 44. Which of the following statements is/are not true regarding
 - (a) All the carbon atoms in graphite are sp3 hybridized
 - (b) It has a high melting point.
 - (c) It is a conductor of electricity.
 - (d) It is used as a fuel in industry.
- 45. Which of the following statements is/are true about steam distillation?
 - (a) Steam distillation is used to obtain ethanol after fermentation of sugar.
 - (b) Steam distillation of cloves gives an essential oil that contains eugenol as the major constituent.
 - (c) The composition of the distillate remains the same during steam distillation of cinnamon leaves.
 - (d) Steam distillation is used in refining petroleum.
- 46. Which of the following statements is/are true about metals?
 - (a) They conduct electricity.
 - (b) The density of all metals is higher than that of water.
 - (c) They react with dilute acids always liberating H, gas
 - (d) Majority of the elements are metals.

	774 A 2000 G 770 (f	Second Statement
	First Statement	Fluorine is more electronegative
51	HF is a weaker acid than HCl in aqueous solution.	than chlorine.
52	Addition of a few drops of H ₂ SO ₄ increases the electrical conductance of water.	H ₂ SO ₄ acid increases the dissociation of water molecules.
53	Polyvinyl chloride is an unsaturated polymer.	Polyvinyl chloride is made by the polymerization of CH ₂ =CH-Cl.
54	In nucleophilic addition re- actions, aliphatic aldehydes are generally more reactive than aliphatic ketones.	The electron release from the alkyl groups in a ketone makes the carbonyl carbon less positively charged.
55	An oxidation reaction and a reduction reaction always occur simultaneously.	All chemical reactions are disproportionation reactions.
56	The change in [H ⁺] when the pH of a solution is changed from 1 to 2 is the same as when the pH is changed from 3 to 4.	In aqueous solution, pH = -log ₁₀ [H ⁺]
57	C ₆ H ₅ CH ₂ NH ₂ and C ₆ H ₅ NH ₂ are soluble in aqueous HCl, but C ₆ H ₅ CONH ₂ is insoluble in aqueous HCl.	Base strength of C ₆ H ₅ CONH ₂ is higher than that of either C ₆ H ₅ CH ₂ NH ₂ or C ₆ H ₅ NH ₂ .
58	A wet litmus paper cannot be used to distinguish between CO ₂ and SO ₂ .	Both CO ₂ and SO ₂ are acidic gases.
59	Real gases deviate more from ideal behaviour at high pressures and low temperatures.	A real gas molecule has a smaller volume than an ideal gas molecule.
60	The ionic product of water, K _w , decreases as the temperature is increased.	Dissociation of water is an exothermic process.
		0