

Answers to Biology I - 2012 New syllabus

	THE TARGET OF THE PARTY IN	SA II - EMITE	146 M PATHERON
1 - 3	16 - 4	31 - 4	46 - 4
2 - 3	17 - 4	32 - 1	47 - 3
3 - 3	18 - 5	33 - all	48 - 2
4 - 3	19 - 4	34 - 4	49 - 4
5 - 1	20 - 4	35 - 2	50 - 2
6 - 2 or 5	21 - 4	36 - 1	
7 - 5	22 - 3	37 - 5	
8 - 1	23 - 5	38 - 2	
9 - 5	24 - 1 or 4	39 - 5	
10 - 2	25 - 2	40 - 4	
11 - 5	26 - 5	41 - 3	
12 - 1	27 - 3	42 - 5	
13 - 5	28 - 1	43 - 4	
14 - 3	29 - 5	44 - 4	
15 - 4	30 - 4	45 - 1	V

www.alpanthiya.lk

G.C.E. A/L Biology - August 2012

Biology II (New syllabus) - Part A

l A. (i) Element Major Form

C CO,

H H,O

O H,O/O,

N NOT / NH

P HPO. 2/H, PO.

S SO. 2

(ii)o Macro elements are necessary in large amounts/ More than 0.01% in dry weight

- Trace elements needed in relatively low amounts/
 Less than 0.01% in dry weight
- (iii) Functions of trace elements found in plants.
 - Maintaining Osmosis/ Ionic balance
 - o Chlorophyll Synthesis
 - Component of cytochromes/ Component of nitrogenase

Any 2

- Activator of certain enzymes
- Involved in Nucleic acid synthesis
- Component of certain enzymes
- Nitrogen fixation
- Nitrate reduction

(iv)o Carbohydrates

- Proteins
- Lipids
- Nucleic acids

(v) (a) $6H_2O + 6CO_2 \longrightarrow C_6H_{12}O_6 + 6O_2$

(This is the overall reaction of photosynthesis)

- (b) o Cell enlargement
 - o Mechanical support in herbaceous plants
 - o Turgor movements
 - Movement of guard cells
 - Blooming of flowers

(vi) Triose - Glyceraldehyde

Pentose - Ribose / Deoxyribose

/ Ribulose

Hexoses - Glucose/Fructose / Galactose

Disaccharides -Sucrose/ Maitose / Lactose

(B) (i) Stage Site Glycolysis Cytoplasm

Krebs cycle Matrix of mitochondria inner membrane of

mitochondria / cristae

- (ii) ATP, NADH, FADH, FADH,
- (iii) a) Proteins Fats / Oils/ Lipids
- Proteins → amino acids → Carboxylic acids → Krebs cycle
 Fats (Oil) → Glycerol → Glycolysis
 and Fatty acids → Krebs cycle (iv) a)
- (C)(i) It is the arrangement of organisms into groups on the basis of common characteristics of organisms
 - (ii) Aristotle
 - (iii) o Artificial classification

- Natural classification
- (iv) o Morphological o Anatomical
- Cytological
- Molecular / DNA and RNA base sequences

Any 2

(v)

Character	Insecta	Nematoda	Echinodermata	Mollusca
Endoskeleton	-	-	+	+
Distinct cephalization	+	-	-	+
Well developed coelom	(4)	-	+	-

2.(A) (i) T. S. of liver lobule

- ii) a. Hepatocytes
 - b. Sinusoids
 - c. Central vein / Intra lobular vein/ Branch of hepatic vein
 - d. Glissons capsule / (branch of) bile duct, artery, vein / portal canal
- Digestion of polysaccharides -(iii)

Buccal cavity / small intestine / deudenum

Digestion of polypeptides -

Stomach / small intestine / deudenum

Digestion of fats -

Stomach / small intestine / deudenum

Absorption of nutrients -

Small intestine / large intestine

Absorption of water - Stomach /small intestine /

large intestine / colon / rectum

- v) o Permeable to gases
 - ω Wet / moist
 - o Thin for short diffusion distance
 - o Possess large surface area
 - Possess a good blood supply/Highly vascularized

Platyhelminthes

- Body surface

Annelida

Body surface, External gills

Arthropoda

- Internal gills / gills,

Trachea, Book lungs

Chordata

- Internal gills / External gills / gills Lungs, Skin / Buccal

cavity or Lining of buccal

cavity

- (B) (i) A respiratory pigment is, a molecule which acts as an oxygen carrier, by binding reversibly with oxygen.
 - (ii) (a)Insecta / Chilopoda / Diplopoda Coelenterata,
 - (b) Respiration takes place via trachea where oxygen is directly transported to cells or, in Coelenterata,
 - direct gas exchange across body wall
 - Sickle cell anaemia (iii) o Thalassemia
 - B*, B', O', O' (iv)
 - (i) o Cuticle (C)
 - o Lenticels
 - o Light (ii)
 - o Temperature,

- Wind, / Wind speed
- o Humidity of air
- Available water in soil
- CO, concentration

Any 4

- (iii) o Starch sugar conversion
 - o K+ ion intake
- (iv) Starch to sugar conversion
 - During photosynthesis CO₂ concentration decreases in guard cells raising pH in guard cells.
 - o Hydrolysis starch to sugars (by enzymes), occurs.
 - This increases solute potential / decreases water potential in guard cells
 - Water enters guard cells by osmosis increasing Largor, to cause opening of stomata.
 - o At night reverse reactions occur and stomata close.

OR

K+ ion intake

- In the presence of light active intake of K+ ions into guard cells, occurs
- This increases solute potential / decreases water potential in guard cells
- Water enters guard cells by osmosis
- o and increases turgor to cause opening of stomata
- Exit of K⁺ from guard cells closes stomata
- This occurs in the absence of light / at night
- (v) o Transpiration pull
 - o Cohesive and adhesive forces of water molecules
 - Water potential gradient between soil solution and atmosphere
- (vi) Transportation of some material need APT, produced by aerobic respiration
- (vii) Blocking free movement of ions through apoplast pathway allowing selective absorption
- 3.(A) (i) Excretion is the removal of the waste products of metabolism from the body
 - Because, if accumulated, they are toxic to the cells or body
 - (ii) Annelids

Nephridia

Platyhelminthes

Flame cells

Mammals

Nephrons

Crustaceans

Green glands

- (iii) o No carbon loss from the body
 - o Energy is not needed for synthesis of NH,
- (v) o Proximal convoluted tubule
 - o Distal convoluted tubule

- (vi) NH⁺₄, K⁺, H⁺
- (vii) o Maintain the constant osmotic pressure in blood
 - Control or regulate blood volume
 - o Secretes hormones
 - Regulation of blood pH
 - Regulation of blood pressure
 - Osmoregulation

Any 4

- (B)(i) Cerebrum, Hypothalamus, Thalamus
 - (ii) Coordination, Maintain homeostasis, Integration
 - (iii) Neuroglea / glea cells
 - (iv) o It is a moving action potential
 - Immediately after one action potential, another action potential cannot be formed /Due to the presence of refractory period
 - (v) Mid brain
 - o Control reflex movement of eye muscles
 - Controls reflex movement of the head, neck, and trunk
 - o Changes the size of a pupil
 - o Changes the size of the lens in the eye
 - o Changes the shape of the lens in the eye

Any 2

Cerebral cortex

Memory / Intelligence / sense of responsibility / thinking / reasoning / moral senses / learning / sensory perception /perception of pain / perception of temperature / perception of touch / sight / hearing/ perception of taste / perception of smell / control of voluntary muscle contraction / initiation of muscle contraction / Recognition and interpretation of sensory information

Any 2

Red nucleus - Deleted

Rods of eye

- o Involve in night vision,
- o Response to low light intensity
- Black and white vision

Any 2

Free nerve ending of skin

- Act as thermoreceptors / Sensitive cold and warmth
- o Act as touch / pain / mechano receptiors
- (C)(i) Maintenance of a constant internal environmen
 - (ii) ADH, Aldosteron, ACTH, CRH

- (iii) o Set point (Norm) / Fixed value
 - o Receptors
 - Corrective mechanism
- (iv) Glucogan, Thyroxin, Adrenalin, Growth hormone, Cortisol
- (v) Extensibility
 Elasticity
 Excitability / irritability
 Contractability
- 4. (A)(i) XY
 - (ii) XX
 - (iii) X chromosome

(iv) Genotype

Normal Male - X^N Y

Color blind male - Xⁿ Y

Carrier female - X^NXⁿ

Colorblind female - XⁿXⁿ

- (v) o Downs syndrome
 - Klinefelters syndrome
 - o Turners syndrome
- (B)(i) (a) Habitat Place where an organism lives in the environment
 - (b) Niche Role that and organism plays in the environment /eco system

Or

Sum total of the ways or methods that a species uses the environmental resources

- (ii) (a) Ramsar convention
 - (b) o Bundala national park
 - o Madu ganga sanctuary
 - Anavilundawa tank sanctuary
 - Vankalai sancturay

Any 3

(iii) Grasslands - Savanna, Patana

Major difference - Savanna contains

isolated / scattered trees

Patana - Trees are not normally present

(iv) Evergreen trees

- Montane forests, Tropical rain forests Dry Mixed (evergreen) forests Thorn forests Emergent trees - Tropical rain forests
Trees with twisted trunks - Montane forests
Continuous canopy Tropical rain forests

- (C)(i) Production of new plants by vegetative parts of plants, like from axillary buds or branches etc. (not from seeds)
 - (ii) Type of vegetative reproduction

Using Rhizames
Using Corms
Using Bulbs
Using Runners
Using Tubers
Using Bulbils

Example

Zingiber (Giner)/ Canna (cannas)/ Musa (banana)/ Curcuma (turmeric Alocasia,/ Colocasia/ Gladiolus Allium (onion) / Crinum Centella / Cyperus / Pistia Solanum (Potato) Ananas, (pineapple) / Dioscoria

- (iii) Advantage Rapid propagation / Genetically identical plants can be obtained
 Disadvantage No genetic variations
- (iv)(a) Growing tissues of plants / Growing parts of Plants
 - o in sterile,

Using Adventituous buds

Bryophyllum/ Begonia

- artificial culture media,
- o under in-vitro conditions.
- (b) o Water,
 - o Carbon source / Sucrose,
 - Plant growth substances / Auxins & Cytokinins
 - Inorganic nutrients
 - Organic Substances / Vitamins
- (c) o Producing plants in large numbers
 - o with same genotype
 - Rapid propagation
 - o Require small space for propagation
 - Can be grown irrespective of climatic conditions
 - Ability to propagate plants which do not produce viable seeds
 - o Ability to produce disease free plants.

Any 3

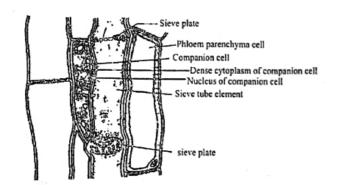
Part B - Essay

- i. 1. Enzymes are (globular) protein molecules
- 2. Produced by living cells.
 - (Generally) catalyze catabolic reactions and anabolic reactions / metabolic reactions/ biological reactions in living cells.
 - 4. by reducing the activation energy required for the reaction
 - 5. without being used up (during the reaction)
 - Enzymes act by active sites combining with substrates to form and enzyme-substrate complex
 - 7. Which is short live / unstable
 - 8. and hence breaks down into products.
 - Enzymes are specific / catalyse only a single reaction
 Two hypothesis have been proposed to explain mechanism of enzyme activity
 - 10. Lock and key hypothesis
 - Which suggests that enzymes have a particular shape into which substrates fit
 - 12. Induced fit hypothesis
 - 13. Which suggests that enzymes and active sites are (physically) more flexible structures which can assume shapes that fit on to the substrate.
- 14. When substrate combines with and enzyme it induces changes in the enzyme structure
- 15. which enable enzymes to function effectively
- Many enzymes require non proteineous components/ Co-factors, which are
- 17. Inorganic ions or
- 18. Prosthetic groups
- 19. Co-enzymes activate enzyme activity
- 20. Eg: Salivary Amylase activity increases by Clions
- 21. Prosthetic groups are organic molecules,
- 22. Which are tightly bound to enzymes
- 23. Eg: FAD/FMN/ Biotin / Heam
- 24. Functions / acts as electron carriers / oxygen carriers
- 25. Co-enzymes are organic molecules,
- 26. which are loosely associated with enzymes
- Eg: NAD / NADP/ Co enzyme A (for respiration, photosynthesis etc)
- 28. They act as hydrogen acceptors.
- 29. Different factors affect enzymes activity
- 30. pH affects rate of enzyme activity / Different enzymes function best at optimum pH values/ have different optimum pH values / Extremes of pH denature enzymes
- 31. Temperature affects rate of enzyme activity./very high temperature denatures enzyme
- 32. Rate of enzyme reaction doubles For every rise of temperature by 10 °C until an optimum temperature reaches.
- Increase in substrate concentrations increases rate of enzyme activity.

- A variety of small molecules / inhibitors inhibit enzyme activity
- 35. Competitive reversible inhibitors.
- where compound structurally similar to substrate combines with active site of the enzyme
- 37. Eg: sulfonamides
- 38. Non competitive reversible inhibitors,
- 39. combines with sites other than active site of enzyme
- 40. Eg: cyanide ions combine with metallic ion of enzyme / Copper ions in cytochrome oxidase
- 41. Irreversible inhibitors
- 42. Such as heavy metal ion / Hg+2 /Ag+ / As / Cu
- combine permanently with SH groups in enzymes, thereby preventing the enzyme from combining with substrate.
- 6.a) o An organism whose genetic characteristics / genome have been modified / altered by
 - o insertion of a modified gene / or a gene
 - o from another organism / bacteria / plant /animal / virus/ fungi
 - using the technique of genetic engineering / recombinant DNA technology in a way
 - o that does not occur naturally
 - Many crop plants with useful characters introduced from other species are used in agriculture. Medicine and industry
 - Pest resistance / insect resistance have been acheived
 - 2. in corn / soya bean / cotton / canola
 - using Bt gene/ genes from B. thuringiensis <u>Bacillus</u> thuringiensis
 - These organisms are resistant to viral diseases / rings spot disease
 - in papaya
 - 6. Herbicide tolerant / weedicide resistant
 - 7. Soya beans produced
 - 8. Using genes / Glyphosate tolerant gene
 - 9. using Agrobacterium tumifacient and A. vehiclale
 - 10. increased nutrients
 - 11. Golden rice containing
 - β carotene gene from bacterium / Ervinia, has been produced
 - 13. Production of drought resistant plants and
 - production of salt tolerant plants have also been produced.

Human applications are:

- 15. Recombinant human insulin
- 16. Human growth hormone / somatotropin
- 17. Human blood clotting factor
- 18. Antigrowth hormone
- 19. Hepatitis B vaccine


- 20. Gene therapy
- 21. Vitamins / biotin / Riboflavin / Vitamin C
- 22. Amino acids / Glutamic acids
- 23. Enzymes like Invertase /Chymosin /Amylase /
 Pectinase
- 2) 1. Potential risks to human
 - 2. Allergenicity / Food allergies produced
 - 3. Production of novel (new) toxic substances
 - 4. Transfer of antibiotic resistance into gut bacteria (antibiotics used as markers)
 - Unintended transfer of genes through/ Gene flow to plants
 - 6. through cross pollination
 - 7. Producing herbicide resistant weeds.
 - 8. Bt (insecticidal gene) gene containing plant, can affect beneficial insects.
 - Unknown effects on Biodiversity / loss of flora / Fauna / soil microorganisms
 - Domination of world food production by few companies / developed world
- Bio piracy or foreign exploitations of natural resources.
- 12. Violation of natural organisms intrinsic values.
- Tampering with nature by mixing genes among species.
- Objections to consuming animal genes in plants (by vegetarians)
- Defense mechanisms of the human body prevents the entry and establishment of pathogens / microbial infections.

uman body has

- 2. Non specific defense mechanism and
- 3. Specific defense mechanism
- Non specific defenses are present in normal healthy human and
- protect host from any pathogen regardless of a particular species.
- 6. Eg; Skin
- 7. acts as a physical barrier because
- 8. its Keratinized outer layer,
- 9. is not easily degraded by microbial enzymes.
- 10. Saline sweat / sebum / antimicrobial substances prevent the establishment of pathogens.
- 11. Mucous membranes of the respiratory tract secretes mucous which traps microorganisms
- 12. Cilia in the epithelium of respiratory tract / trachea / bronchi removes microorganisms.
- Coughing / sneezing expel microorganisms from the respiratory tract / trachea / body.
- Some body fluids contain antimicrobial substances and
- 15. Enzymes,
- 16. which prevent considerable growth of microorganism
- 17. Eg: Lysozymes in saliva / tears,

- 18. by break down becterial celis.
- Lactoferrin present in tears / semen / breast milk / bile,
- 20. binds iron,
- which is essential growth element required for pathogenic microorganisms.
- 22. Acid in the stomach,
- 23. kills many bacteria ingested with food.
- 24. Lactic acid that is produced in vagina,
- createsacidic/unfavourable environment for pathogens.
- 26. Interferon produced in blood is response to
- viral infections (in eukaryotic cells) protect host against viral infections
- 28. Neutrophils,
- 29. Macrophages (in blood), Monocytes
- 30. destroy microbial pathogens by phagocytosis
- Inflammatory response prevents the spread o infection from the original site.
- Inflammatory response is a generalized response to infections / tissue damage
- 33. Specific defence mechanism /development of specifi immunity, take place when foreign substances microorganisms /virus /bacteria & fungi /enter th body / invade the body.
- 34. Invading microorganisms which are called antigens
- 35. produce in the blood of host.
- 36. Specific antibodies,
- 37. Which are immunoglobulin / proteins,
- 38. combine with antigen,
- and eliminate the invaded pathogen preventir infections.
- Development of specific immunity with specific antibodies is called acquaired immunity.
- Four types of acquired immunity protects host fro microbial infection
- 42. Naturally acquired active immunity
- 43. Eg: as a result of natural infection
- 44. Such as measles / chicken pox / mumps
- 45. Naturally acquired passive immunity
- 46. Eg(antibodies of mother is passed to the foetus
- 47. Through placenta / breast milk.
- 48. Artificially acquired active immunity
- Eg: attenuated microbial cells used in vaccines actively produce antibodies against infections diseases
- 50. Eg: Polio vaccine / BCG vaccine
- 51. Artificially acquired passive immunity
- Vaccines containing already prepared antibodies given as injections.
- 53. Eg: antitetanus vaccine / antirabies vaccine
- Formation of a scab / blood clot when skin g damaged
- 55. due to the action of platelets and fibrinogen

. a) Structure of phloem tissue as it appears in a longitudinal section

- Transport can take place in both directions / bidirectional
 - 2. Amount of material transported is very high.
 - 3. Rate of transport is very high
- 4. Distance of transport can be long (in some plants)
- Transport takes place with hydrostatic pressure.
- Sucrose is the major organic substance transported through phloem tissue.
- 7. Other substances tike Amino acids,
- 8. Vitamins,
- 9. Growth substances / hormones,
- 10. Inorganic ions / PO- /K+ are also transported.
- 11. The tissue from which translocation begins in called the source which is mesophyll cells
- The tissue of destination is called the sink, may be root cells.
- Transfer cells which are some modified companion cells.
- actively/using ATP/ using metabolic energy transport sucrose
- 15. into sieve tubes at the source
- 16. against concentration gradient
- 17. This process is called phloem loading.
- 18. This increases the solute potential of the sieve tubes,
- 19. and decreases the water potential of the sieve tubes.
- 20. The water then enters the sieve tubes,
- 21. by osmosis,
- 22. from adjacent xylem vessels,
- resulting in a buildup of hydrostatic pressure in sieve tubes.
- 24. Sucrose is actively removed from the sieve tubes, at the sink (using ATP/energy)
- 25. through transfer cells
- 26. This is called phloem unloading.
- 27. This reduces solute potential in sieve tubes.
- 28. increases water potential in sieve tubes,
- causing moving of water to adjacent xylem by osmosis,
- resulting in a decrease in hydrostatic pressure in sieve tubes,

- 31. establishing a pressure potential gradient from source to sink
- This allows sucrose solution to be transported along sieve tubes,
- 33. Passively,
- 34. by mass flow
- 35. This mechanism is pressure flow hypothesis

Any 33

- Homeostasis is the maintenance of constant internal environment.
 - Hypothalamus is involved in thermoregulation / Regulation of body temperature
 - 3. thermoregulatory center is located in hypothalamus
 - 4. When body temperature is reduced, heat gain center in hypothalamus is stimulated and
 - heat generating mechanisms are initiated
 - These are shivering more work done by muscles using increased respiration
 - Increase in metabolic rate increased respiration with heat energy as by product.
 - Constriction of erector pilli muscle to trap air (insulator)
 - Skin blood vessels are also constricted reducing heat loss by radiation from surface blood.
 - Those result is increasing the body temperature (To the normal level)
 - When body temperature is increased, heat loss center in hypothalamus is stimulated and
 - 12. heat loss mechanisms are initiated
 - these are sweating which uses body heat to evaporate water in sweat
 - 14 reduction in metabolic rate less respiration. Hence less heat produced as by product
 - skin blood vessels dilate lesser heat lost by radiation from skin surface
 - 16. these result in decreasing the body temperature (to the normal level)
 - 17. hypothalamus is involved in osmoregulation , maintenance of the osmotic pressure of blood
 - 18 when osmotic pressure of blood increases due to insufficient water in blood osmoreceptors in hypothalamus gets stimulated and (due to impulses from these)
 - ADH is secreted
 - 20. And released from posterior pituitary
 - 21. ADH increases the resorption of water in
 - 22. Distal convoluted tubule and
 - 23. Collecting duct of nephron
 - 24. Increases in osmotic pressure of blood stimulate thirs center also (located in hypothalamus)
 - 25. resulting in (stimulating) drinking of water
 - 26. Due to these osmotic pressure in blood reduces to

- normal level
- When osmotic pressure of blood reduces due to excessive water in blood, secretion of ADH is inhibited and
- 28. amount of water resorped is reduced
- 29. resulting in an increase in osmotic pressure of blood
- Hypothalamus maintains homeostasis through regulating function of anterior pituitary/ releasing thyrotropin releasing hormone/ corticotrophin hormone
- 31. and maintains sodium ion concentration of blood
- 32. through ACTH / Aldosteron
- 33. and maintains basal metabolism /metabolic rate.
- 34. through the TSH / thyroxin
- Hypothalamus maintains homeostasis through preparing body for stress condition / fight or flight / emergency situation.
- 36. through adrenalin / noradrenalin production.
- 37. Hypothalamus maintains homeostasis through regulating the autonomic function of the body
- 38. by regulating sympathetic and
- 39. para sympathetic nervous system
- Hypothalamus maintains homeostasis also by regulating hunger
- through the stimulation of appetite center / hunger center /satiety center (which is located in the hypothalamus)

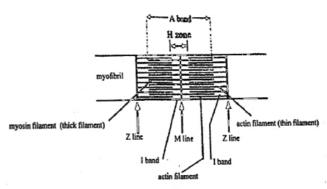
Any 38

10.a) Genetic code

- It is the sequence of nucleotides in DNA/ RNA/ gene
- that determines the amino acid sequence,
- 3. during the synthesis of protein.
- Code consists of codons.
- 5. A codon consists of triplet of nitrogenous bases
- 6. Each codon is specific for a single amino acid
- 7. Sixty four codons are available
- 8. Only 61 codons specify amino acids
- Code is degenerate / some amino acids are repeated / coded by more than one codon
- Code is non over-lapping / successive triplets are read in order
- Code is universal / almost all organisms in nature use the same genetic code
- During protein synthesis some codons act as start codon and,
- 13. some as stop codons

Points 13

b) AIDS


- 1. Acquired immune deficiency syndrome is
- 2. Caused by a virus
- Known as Human immune deficiency virus (HIV).
- 4. Is a retro virus
- Enveloped virus

- 6. Contain envelope protein
- Contain RNA
- AIDS brings about a progressive failure of human immune system.
- 9. causing opportunistic pathogenic infectious
- 10. Cancers.
- 11. and pneumonia
- 12. causing death ultimately.
- 13. The HIV is transmitted through sexual contact
- through body fluid / blood or serum (through blood transfusion)
- 15. and by unsterilized needles

Points 15

c) Sarcomere

- Sarcomere is the contractile unit of muscle fibril / muscle contraction
- 2. There are several sarcomeres in a fiber
- 3. They are found only in skeletal and
- cardiac muscle fibers
- 5. Sarcomere is the region between two dark lines / Z
- These Z lines / dark lines are made up of (a protein called) actin.
- Sarcomere contains thick filaments,
- 8. which are made of (a protein called) myosin
- 9. Actin is made up of
- 10. thin filaments.
- All these filaments are longitudinally arranged (in the sarcomere)
- 12. Sarcomere has dark bands / A bands,
- 13. which have (thick) myosin and (thin) actin filamints
- Light bands / I bands,
- 15. which contains (thin) actin filaments only
- Thin / actin filaments are attached to Z lines, which are also thin membranes.
- 17. Thick/ myosin filaments are attached to M line.
- In the H zone
- 19. which is the gap between two thin filaments.
- 20. Each thick filament is surrounded by 6 thin filaments
- 21. Thin filaments are stacked between thick filaments.
- 22. Only thick filaments are present in the H zone

The diagram earns extra marks.