PART A - STRUCTURED ESSAY

Answer all four questions on this paper itself. (Each question carries 100 marks.)

Do not write in this column

- (a) State whether the following statements are true or false on the dotted lines. Reasons are not required.
 - (i) Rules related to polarizing power of cations and polarizability of anions predict that the melting point of KBr is higher than that of LiI.
 - (ii) The electron gain energy of Be is positive.
 - (iii) The spacing between two adjacent lines in a given series of the atomic spectrum of hydrogen decreases gradually in the direction of decreasing wavelengths.
 - (iv) The de Broglie wavelength associated with the N_2 molecule is shorter than the de Broglie wavelength of the O_2 molecule when travelling at the same velocity.
 - (v) The effective nuclear charge $(Z_{\rm eff})$ felt by a valence electron of C is greater than the effective nuclear charge felt by a valence electron of N.
 - (vi) All C-O bonds in carbonic acid (H2CO3) are equal in length.

(24 marks)

(b) (i) Draw the most acceptable Lewis dot-dash structure for the molecule Cl₂O₄. Its skeleton is given below.

(ii) Give the oxidation states of the two chlorine atoms in the structure drawn in (i) above. The chlorine atoms are labelled as follows.

$$Cl^{1}-O-Cl^{2}-O$$
 Cl^{1} , Cl^{2}

(iii) The most stable Lewis dot-dash structure for the ion N₂O₂²⁻ is shown below. Draw two additional Lewis dot-dash structures (resonance structures) for this ion.

(iv) Complete the given table based on the Lewis dot-dash structure and its labelled skeleton given below.

		N ¹	C ²	C ³	N ⁴
I.	VSEPR pairs around the atom				
П.	electron pair geometry around the atom				
Ш٠	shape around the atom			111111	
IV.	hybridization of the atom				

		fy the atom given belo		orbitals invol	ved in the	e formation of	of σ bonds b	between the two
	I.	N1-F	N ¹					
I	I.	N^1 — C^2	$N^1 \cdot \cdot \cdot \cdot$			C ²		
П	Ι.	C ² —H	C^2			Н		
L	V.	$C^2 - C^3$	$C^2 \cdot \dots \cdot$			C ³		The state of the s
,	V.	C3—N4	C ³			N ⁴		
V	Ι.	N4—O	N ⁴			O		
		fy the atom below.	ic orbitals	involved in	the forma	tion of π bo	nds between	the two atoms
I	I.	C^{3} — N^{4}	C ³			N ⁴		
			C ³			N ⁴		
(vii) St	tate t	the approxi	mate bond	angles around	d N ¹ , C ² ,	C3 and N4 a	toms.	
		N^1	,	C ²	, C	3	N ⁴	
viii) A	rrans	ge the atom	s N ¹ C ²	C3 and N4 in	the increa	sing order o	f electroneg	ativity.
(i) A		r emits pho	otons of wa	avelength 695	nm.	. <		(54 marks) s belong?
(i) A	I. I.	To which	otons of waregion of	avelength 695	nm. Ignetic sp	ectrum do t	hese photon mol ⁻¹ .	
(ii) A ele Na	mole emen mme	To which a Calculate the Velocity of the molecular of the	mula AX ₃ the central ar shape(s	of a mole of a m	nm. Ignetic sp f these p m s ⁻¹ 1 -X \sigma bone AX ₃ in	ectrum do to	these photon mol^{-1} . and $h = 6.6$ and X represents below.	s belong? $53 \times 10^{-34} \text{ J s}$ sent symbols of
(ii) A ele Na	mole emen ame (To which is control of the coule of for the coule of for the coule of AX3 is presented as a fax and the coule of AX3 is presented as a fax	mula AX ₃ the central ar shape(s	of a mole of a m	nm. agnetic sp f these p m s ⁻¹ 1 -X σ bone AX ₃ in 1	ds. Here, A	these photon $f(mol^{-1})$, and $f(mol^{-1})$ a	s belong? $53 \times 10^{-34} \mathrm{J s}$ sent symbols of

 AX_3 is non-polar

(22 marks)

. The	e questions $[(a)-(d)]$ given below relate to elements/species designated as A, B, C and D.	Do not
	A is a s-block element. It has an atomic number less than 20. It reacts with water vigorously with ignition to give a strongly basic solution, with the evolution of a gas. A reacts with excess $O_2(g)$ to give the superoxide. The naturally occurring ore Sylvite contains a compound of A.	write in this column
	(i) Write the chemical symbol of A.	
	(ii) Write the complete electronic configuration of A.	
	(iii) Name the gas evolved in the reaction of A with water.	
	(iv) What is the colour given by A in the flame test?	
	(v) Write the balanced chemical equation for the reaction of A with excess $O_2(g)$.	
	(vi) Is the first ionization energy of A higher or lower than that of the element in the same group and the period above it in the Periodic Table? Briefly explain your answer.	
	(vii) Give the chemical formula of the compound of A in Sylvite	
(b)	B is an anion containing only the two elements X and Y , in the ratio 2:3 respectively. Both X and Y are p -block elements that belong to the same group in the Periodic Table. The atomic number of each element is less than 20. The electronegativity of X is less than the electronegativity of Y . When X reacts with hot concentrated sulfuric acid, a colourless gas with a pungent smell is evolved as one of the products.	
	(i) Write the chemical formula, including the charge, of B	
	(ii) Draw the Lewis dot-dash structure of B.	
	(iii) Give the oxidation state of the central atom of B.	
	(iv) Give a chemical test to identify B. (Note: Observation(s) is/are also required.)	
	(v) Write the chemical formula for the compound which has A as the cation and B as the anion.	
	(25 marks)	
(c)	$\mathbb C$ is an oxidizing agent. It is composed of three elements in the ratio 1:1:3. One of the elements of $\mathbb C$ is $\mathbb A$. The other two elements belong to the p -block of the Periodic Table. One of these two elements is also present in $\mathbb B$. The salt formed between Ag^+ and the anion of one of these elements is yellow in colour, and insoluble in concentrated ammonia solution. Write the chemical formula of $\mathbb C$.	
	(10 marks)	

	s a compound composed of two elements. B	oth these elements are also present in C.
(i)	When $C(aq)$ is mixed with an excess of l solution results.	D(aq) in acidic medium, a reddish-brown
	I. Identify D	
	II. Write the balanced ionic equation for th	e reaction that takes place.
(ii)	On addition of an excess of a solution conobtained in (i) above, the reddish-brown solutionic equation for the reaction that takes plant	ion becomes colourless. Write the balanced
(iii)	The concentration of a solution containing B utilizing the reactions in (i) and (ii) above. give the expected colour change at the end	State an indicator which can be used and
	Indicator :	
	Colour change:	
	s (i) to (v) are based on the given phase	130
	gram.	120
	Indicate the following regions on the phase diagram by writing the letters P, Q, R.	110
	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P – region where only the liquid phase is	110
	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase	110 100 90 80 70
	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present	110 100 90 80
	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present	110 100 90 80 70 60
(i)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the	110 100 90 80 70 60 50
(i)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the vapour phase are in equilibrium	110 100 90 80 70 60 50 100% 50% 0%
(i)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the vapour phase are in equilibrium Give the boiling points of pure X and pure Y.	110 100 90 80 70 60 50 100% 50% 0% Composition (X, mol%)
(i)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the vapour phase are in equilibrium Give the boiling points of pure X and pure Y. X	110 100 90 80 70 60 50 100% 50% 0% Composition (X, mol%)
(ii) (iii)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the vapour phase are in equilibrium Give the boiling points of pure X and pure Y. X	110 100 90 80 70 60 50 Composition (X, mol%) xture of X and Y containing 40 mol% of
(ii) (iii)	Indicate the following regions on the phase diagram by writing the letters P, Q, R. P - region where only the liquid phase is present Q - region where only the vapour phase is present R - region where the liquid phase and the vapour phase are in equilibrium Give the boiling points of pure X and pure Y. X	110 100 90 80 70 60 50 Composition (X, mol%) xture of X and Y containing 40 mol% of

(v) Calculate the saturated vapour pressure of X at the temperature of 100 °C.

Do not write in this column

(vi) In a separate experiment, a mixture containing X and Y was allowed to reach equilibrium in a **closed rigid** container at temperature T. It was then found that the liquid phase in equilibrium with the vapour phase contained 0.10 mol of X and 0.10 mol of Y. Saturated vapour pressures of X and Y at this temperature are 4.0×10^5 Pa and 2.0×10^5 Pa, respectively. Using Raoult law, calculate the partial pressures of X and Y.

(50 marks)

- (b) The concentration of an aqueous solution of acetic acid (solution Z) was determined by titrating with an aqueous solution of NaOH. A volume of 12.50 cm³ of solution Z required 25.00 cm³ of NaOH solution of concentration 0.050 mol dm⁻³ to reach the end point.
 - (i) Calculate the concentration of acetic acid in solution Z.
 - (ii) Calculate the pH value of solution \mathbb{Z} . Acid dissociation constant of acetic acid (K_a) at the temperature at which the experiment was carried out is 1.80×10^{-5} mol dm⁻³.

(iii) To another portion (100.00 cm^3) of solution \mathbb{Z} , 0.200 g of pure solid NaOH was added and dissolved. Calculate the pH value of this solution assuming that the volume and the temperature of the solution remain unchanged. [Relative atomic mass: Na = 23, O = 16, H = 1]

	nswer.	above behave as a buffer solution? Explain your	in the
			1000
v a	olume of solution Z. Does this so	f pure solid NaOH was dissolved in a 100.00 cm ³ olution behave as a buffer solution? Explain your Assume that the volume and temperature of the	
			1
			-
		(50 marks)	10
When F has treated gave 2,4-c	ers, only B exhibits optical isomerism A, B and C were reacted separations of the molecular formula C ₅ H ₁₂ d separately with PCC. F did not a G and H respectively. Both comp	ng the molecular formula $C_5H_{11}Br$. Of these three sm. A and C are positional isomers of each other. ately with aqueous NaOH, compounds D, E and O were formed respectively. D, E and F were react with PCC. D and E reacted with PCC and bounds G and H gave coloured precipitates with nd silver mirrors with ammonical AgNO ₃ .	
	A	B	
	A		
		B	
	A		
		B	
		B	
	C	B	
	C	B	

(b) Draw the structures of the products \mathbb{I} , \mathbb{J} , \mathbb{K} and \mathbb{L} of the following reactions, in the given boxes.

Do not write in this column.

(i) CH₃COCH₃

(1) CH₃MgBr (excess)/dry ether

(ii) $C_2H_5C \equiv CH$ dilute H_2SO_4 / Hg^{2+}

J

I

(iii) CH3CCH3

(1) aqueous NaOH

(2) H+/ A

K

(c) Give the mechanism and the structure of the product formed for the reaction between CH₃CH = CHCH₃ and Br₂/CCl₄.

(20 marks)

100

ติดดู ® ซิซิลซ์ ซุเป็ติฟ์ (เมนูน์ บริเวนุที่ตอนมุดเมรูเ/All Rights Reserved)

ලි ලංකා විතාහ දෙපාර්ගමේන්තුව ලි ලංකා විතාශ දෙපාර්ග**ින්ට විස්ථාහ ලද පාර්තලම්න්තු ව**තාශ දෙපාර්ගමේන්තුව ලි ලංකා විතාශ දෙපාර්ගමේන්තුව இலங்கைப் பரீட்சைத் නිකානස්සභාව இலங்கைப் பළ හැකි දිනකාස්සමාව ඉතින්වන්සට ප්රියාත්ත නිකානස්සභාව இலங்கைப் பரீட்சைத் නිකානස්සභාව Department of Examinations, Sri Lanka Department of **இනෝස්සාන් සහවර්ග විස්තාන්ත කිරීමට වි**ද්යාත්ත විතාශ දෙපාර්ගමේන්තුව ලි ලංකා විතාශ දෙපාර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගමේන්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව ලික්කාස්සම් සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුව සහවර්ගම්න්තුවේ සහවර් සහවර්ගම්න්තුවේ සහවර්ගම්න්තුවේ

රසායන විදනාව II இரசாயனவியல் II Chemistry II

- * Universal gas constant $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$
- * Avogadro constant $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

PART B - ESSAY

Answer two questions only. (Each question carries 150 marks.)

- (i) A gas mixture containing CH₄, C₂H₆ and excess O₂ was introduced into an evacuated closed rigid container. The volume of the container was 8.314 × 10⁻³ m³. The pressure of the container at 400 K was 4.80 × 10⁶ Pa. Calculate the total number of moles of gases in the container. Assume that all the gases behave ideally and that there is no reaction at this temperature.
 - (ii) All the hydrocarbons in the container were completely combusted by increasing the temperature of the container to 800 K. The pressure of the container after the combustion reactions at 800 K was 1.00×10^7 Pa. Calculate the total number of moles of gases in the container after combustion. Assume that H_2O is present as a gas under these conditions.
 - (iii) Write balanced chemical equations (giving physical states, at 800 K) for the combustion reactions of the gases given below.
 - I. CH₄(g)
 - II. $C_2H_6(g)$
 - (iv) Only one of the two hydrocarbons above contributes to the change in the number of moles of gases before and after combustion.

Calculate the number of moles of this hydrocarbon initially introduced into the container.

(v) The container was then cooled to 300 K and the water was removed. Then the pressure of the container was 2.10×10^6 Pa.

Calculate the following.

- I. Total number of moles of H₂O produced
- II. Number of moles of H2O produced from the combustion of C2H6
- III. Number of moles of H2O produced from the combustion of CH4
- IV. Number of moles of O₂ introduced initially into the container

(75 marks)

(b) (i) Using a thermochemical cycle and the data given, calculate the standard enthalpy change for the reaction given below.

 $4~\mathrm{CH_4(g)} + \mathrm{O_2(g)} \longrightarrow 2~\mathrm{C_2H_6(g)} + 2~\mathrm{H_2O(g)}$

	$\left(\Delta H_f^{\circ}\right)$ (kJ mol ⁻¹)	So (J mol-1 K-1)
CH ₄ (g)	-74.8	186.3
$C_2H_6(g)$	-84.7	229.6
$CO_2(g)$	-393.5	213.7
H ₂ O(g)	-214.8	188.8
C(s), graphite	0.0	5.7
$O_2(g)$	0.0	205.1
$H_2(g)$	0.0	130.7

- (ii) Calculate the standard entropy change for the reaction in (b)(i) above.
- (iii) Calculate the standard Gibbs energy change (ΔG°) for the reaction in (b)(i) above at 500 K.
- (iv) State, giving reasons, whether increase in temperature favours the reaction in (b)(i) above. Assume that the enthalpy change and entropy change are independent of temperature.

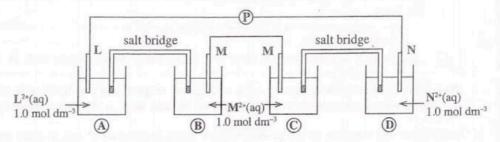
(75 marks)

- 6. (a) (i) Consider the reversible reaction a A(aq) = bB(aq) + cC(aq) that occurs in the aqueous medium. Considering that both forward and reverse steps are elementary reactions, write expressions for the rate of the forward reaction (R₁) and the rate of the reverse reaction (R₂). Rate constants for the forward reaction and the reverse reaction are k₁ and k₂, respectively.
 - (ii) Write the relationship between \boldsymbol{R}_1 and \boldsymbol{R}_2 at equilibrium.
 - (iii) Write down the expression for equilibrium constant $K_{\mathbb{C}}$. Also give the relationship between $K_{\mathbb{C}}$, k_1 and k_2 .
 - (iv) To study the above equilibrium, three experiments were carried out at a constant temperature. In these experiments, different amounts of A, B and C were mixed, and the system was allowed to reach equilibrium. The following data were obtained at equilibrium.

Experiment	Concentration at equilibrium (mol dm ⁻³)				
Number	[A]	[B]	[C]		
1	1.0×10^{-1}	1.0×10^{-2}	1.0×10^{-3}		
2	1.0×10^{-2}	1.0×10^{-3}	1.0×10^{-3}		
3	1.0×10^{-2}	1.0×10^{-2}	1.0×10^{-5}		

- I. Obtain three relationships by substituting the concentrations of A, B and C given in the table for experiments 1, 2 and 3 in the equilibrium constant expression written in (a)(iii) above.
- II. Prove that a = b = 2c using these relationships.
- III. Using the smallest integers for the stoichiometric coefficients a, b and c, calculate the value of the equilibrium constant, $K_{\rm C}$ of the above reaction.

(80 marks)


- (b) Consider the reaction, $p P(g) \Rightarrow q Q(g) + r R(g)$ that takes place in gas phase.
 - (i) The enthalpy change and activation energy of the forward reaction, $\mathbf{p} \, \mathbf{P}(\mathbf{g}) \longrightarrow \mathbf{q} \, \mathbf{Q}(\mathbf{g}) + \mathbf{r} \, \mathbf{R}(\mathbf{g})$ are 50.0 kJ mol⁻¹ and 90.0 kJ mol⁻¹, respectively. Draw the labelled energy diagram (the graph of energy vs reaction coordinate) for this reaction. Show the positions of P, Q and R by marking them on the energy diagram. Also, mark the position of the activated complex as 'activated complex' on it.
 - (ii) Calculate the activation energy for the reverse reaction.
 - (iii) Explain the effect of increasing temperature on the equilibrium constant of this reaction.
 - (iv) Explain the effect of a catalyst
 - I. on the rates of forward and reverse reactions.
 - II. on the equilibrium constant.

(70 marks)

- 7. (a) You are provided with the three metal rods L, M, N and the three solutions L²⁺ (1.0 mol dm⁻³), M²⁺ (1.0 mol dm⁻³), N²⁺ (1.0 mol dm⁻³). When the metal N is dipped in the solution of M²⁺ ions, M²⁺ is reduced to M, whereas when N is dipped in the solution of L²⁺ ions, L²⁺ does not get reduced to L.
 - (i) Giving reasons arrange the three metals, L, M and N in the increasing order of their reducing ability.
 - (ii) Electromotive forces of the two electrochemical cells prepared using $L^{2+}(aq)/L(s)$ electrode and each of the other two electrodes are +0.30 V and +1.10 V. Using this information and your answer to (i) above, calculate $E_{\mathbf{M}^{2+}(aq)/\mathbf{M}(s)}^{\circ}$ and $E_{\mathbf{N}^{2+}(aq)/\mathbf{N}(s)}^{\circ}$.

$$\left(E_{L^{2+}(aq)/L(s)}^{\circ} = -0.80 \text{ V}\right)$$

(iii) You are provided with the following arrangement, where a potentiometer (P) is connected between the metal rods L and N.

- I. Calculate the potentiometer reading.
- II. Write the electrode reactions that occur at each of the electrodes (A), (B), (C) and (D) separately when the potentiometer is removed and L and N are connected by a conductor.
 (75 marks)
- (b) The following questions are based on the element manganese (Mn).
 - (i) Write the complete electronic configuration of Mn.
 - (ii) Write three common oxidation states of Mn.
 - (iii) When MnSO₄·H₂O is dissolved in water, solution P is obtained.
 - I. State the colour of solution P.
 - II. Give the chemical formula and the IUPAC name of the species responsible for this colour.
 - (iv) What would you observe when
 - I. dilute NaOH is added to solution P?
 - II. the mixture from (iv)(I) above is exposed to air?
 - III. conc. HCl is added to the mixture from (iv)(I) above?
 - (v) Give the chemical formulae of five oxides of Mn, and write the oxidation state of Mn in each. State the nature of each of the oxides as basic, weakly basic, amphoteric, weakly acidic, acidic.
 - (vi) Give the chemical formula of the most common oxoanion of Mn.
 - (vii) Give balanced ionic half equations to indicate how the oxoanion given by you in (vi) above behaves as an oxidizing agent in acidic and basic media.
 - (viii) State one use of MnSO₄ in the analysis of water quality parameters.

(75 marks)

PART C - ESSAY

Answer two questions only. (Each question carries 150 marks.)

8. (a) Compound P was converted to compound V using the reaction scheme given below.

(i) Complete the above reaction sequence by drawing the structures of compounds Q, R, S, T and U and writing the reagents for steps 1-6 selected only from those given in the list below.

(Note: The reaction of a compound with a Grignard reagent and the hydrolysis of the resultant magnesium alkoxide should be considered as one step in the above reaction sequence.)

- (ii) Draw the structure of the product formed when compounds P and V react with each other.

 (65 marks)
- (b) (i) Propose a method to prepare a mixture of o-nitrobenzoic acid and p-nitrobenzoic acid from benzene using not more than three (03) steps.
 - (ii) Give the structure of the product X and the mechanism of the following reaction.

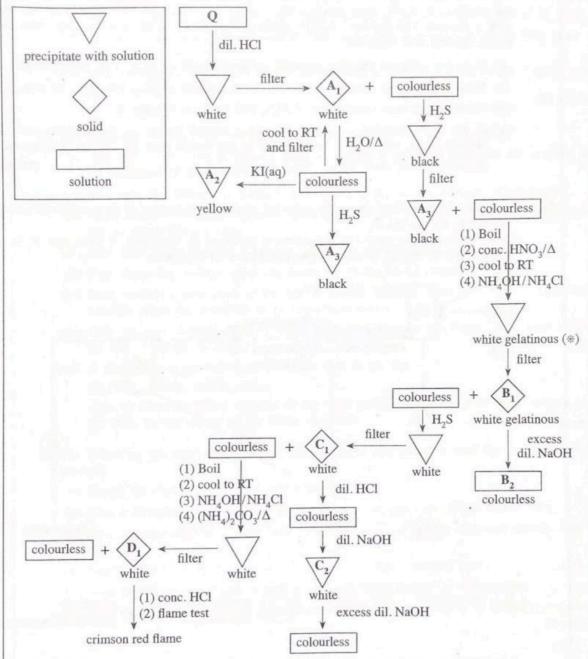
$$\bigcap \frac{\text{CH}_3\text{COCl}}{\text{anhydrous AlCl}_3} X$$

(65 marks)

(c) The structure of benzene is represented as the resonance hybrid of the following two hypothetical six membered cyclic structures (cyclohexatriene).

$$\bigcirc \longleftrightarrow \bigcirc$$

Using the standard enthalpy data of hydrogenation given below, show that benzene is more stable than hypothetical 'cyclohexatriene'.

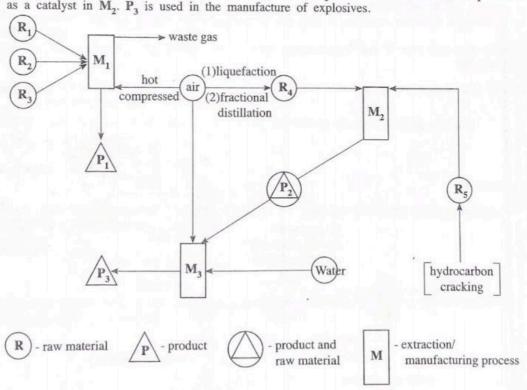

Benzene +
$$3 \text{ H}_2$$
 \longrightarrow cyclohexane $\Delta H^\circ = -208 \text{ kJ mol}^{-1}$ (20 marks)

9. (a) The following question is based on the qualitative analysis of cations.

An aqueous solution Q contains four cations of metals A, B, C and D. Q is subjected to the reactions given in the scheme below.

The symbols given in the box are used to represent precipitates with solutions, solids and solutions.

(Note: RT - room temperature)



(i) A_1 , A_2 , A_3 , B_1 , B_2 , C_1 , C_2 , and D_1 are compounds/species of the four cations A, B, C, and D. Identify A_1 , A_2 , A_3 , B_1 , B_2 , C_1 , C_2 , and D_1 .

(Note: Write only chemical formulae. Chemical equations and reasons are not required.)

(ii) Give a reason for the use of NH₄OH/NH₄Cl as a reagent when obtaining the white gelatinous precipitate (*). (75 marks)

- (b) A mixture X contains only aluminium sulfide (Al₂S₃) and ferric sulfide (Fe₂S₃). The following procedure was carried out to calculate the mass percentages of Al₂S₃ and Fe₂S₃ in X. When a mass m of mixture X was heated at high temperature under H₂ gas, Al₂S₃ remains unchanged but Fe₂S₃ was converted to iron (Fe) metal. The final mass obtained was 0.824 g. When another mass m of mixture X was heated at high temperature in air, both Al₂S₃ and Fe₂S₃ decomposed, giving SO₂ gas. This SO₂ gas was bubbled through a solution of H₂O₂ and oxidized to H₂SO₄ acid, which is the only product. When this entire solution was titrated with a standard 1.00 mol dm⁻³ NaOH solution in the presence of phenolpthalein indicator, the burette reading was 36.00 cm³.
 - (i) Write the balanced chemical equation for the reaction of Fe2S3 with hydrogen gas.
 - (ii) Write the balanced chemical equation for the reaction of SO_2 with H_2O_2 to give H_2SO_4 .
 - (iii) Calculate the mass percentages of $\mathrm{Al_2S_3}$ and $\mathrm{Fe_2S_3}$ in mixture X.
 - (iv) If the above titration is carried out using methyl orange as the indicator instead of phenolphtalein, would there be a change in the burette reading? Explain your answer.
 (Relative atomic mass: Al=27, S=32, Fe=56)
- 10.(a) The following flow chart shows the industrial extraction/production of three important elements/compounds P₁, P₂ and P₃.
 There is evidence to show that our ancestors produced P₁ thousands of years ago. P₁ is used as a catalyst in M. P₁ is used in the way for the production of three important elements/compounds.

- (i) Name the manufacturing processes M₂ and M₃. (e.g.: Manufacture of Na₂CO₃ is named as Solvay process.)
- (ii) Identify the process M1 and name the main constituent of its waste gas.
- (iii) Give the common names of the raw materials R_1 , R_2 and R_3 used in M_1 . (Note: R_1 functions as a reducing agent as well as an energy source in M_1 ; R_2 is a naturally occurring source which can be used to obtain P_1 .)

- (iv) Write a balanced chemical equation for the role of \mathbb{R}_1 as a reducing agent in \mathbb{M}_1 process.
- (v) Identify R4 and R5.
- (vi) Give balanced chemical equations for reactions taking place in the processes M₁, M₂ and M₃. Appropriate conditions (temperature, pressure, catalysts, etc.) must be stated as required. (Note: For the M₁ process, give only the reactions showing the conversion of R₂ to P₁.)
- (vii) Give two uses each of P₁, P₂ and P₃ (other than what is indicated in the flow chart or given in the question).
- (viii) State whether the M_2 process would be favoured at very high temperatures. Explain your answer using ΔH , ΔS and ΔG .
- (b) The following questions are based on photochemical smog and water pollution.
 - (i) State the major types of gaseous chemical pollutants and conditions that are required for the formation of photochemical smog.
 - (ii) State why the strength of photochemical smog is low in the morning and evening.
 - (iii) Using balanced chemical equations, explain how ozone is formed in the lower atmosphere due to photochemical smog.
 - (iv) State four major products (excluding ozone) of photochemical smog.
 - (v) State three free radicals produced during the formation of photochemical smog.
 - (vi) Many countries now promote the use of electric vehicles. State how the use of electric vehicles affect the formation of photochemical smog.
 - (vii) State an environmental problem, other than photochemical smog, that could ease due to the use of electric vehicles.
 - (viii) A ship carrying the following chemicals sank in the sea.
 Na₂HPO₄, HNO₃, Pb(CH₃COO)₂
 State an effect from each chemical on the water quality parameters of the water surrounding the ship, by the release of the above chemicals.
 (50 marks)
- (c) The following questions are based on natural rubber and additives used for polymer related products.
 - (i) Sketch the repeating unit of natural rubber.
 - (ii) Give a compound that can be used to prevent coagulation of natural rubber latex.
 - (iii) State a compound that can be used to coagulate natural rubber latex and explain how it acts.
 - (iv) Briefly state how the 'vulcanization' of natural rubber is carried out.
 - (v) State two types of substances used to increase the efficiency of vulcanization.
 - (vi) Give three properties, which can be enhanced by adding additives to polymer products.

 (50 marks)